CHAPTER 1

Fitting a Straight Line by Least Squares

1.0. INTRODUCTION: THE NEED FOR STATISTICAL ANALYSIS

In today’s industrial processes, there is no shortage of “information.” No matter how
small or how straightforward a process may be, measuring instruments abound. They
tell us such things as input temperature, concentration of reactant, percent catalyst,
steam temperature, consumption rate, pressure, and so on, depending on the character-
istics of the process being studied. Some of these readings are available at regular
intervals, every five minutes perhaps or every half hour; others are observed continu-
ously. Still other readings are available with a little extra time and effort. Samples of the
end product may be taken at intervals and, after analysis, may provide measurements of
such things as purity, percent yield, glossiness, breaking strength, color, or whatever
other properties of the end product are important to the manufacturer or user.

In research laboratories, experiments are being performed daily. These are usually
small, carefully planned studies and result in sets of data of modest size. The objective
is often a quick yet accurate analysis, enabling the experimenter to move on to “‘better”
experimental conditions, which will produce a product with desirable characteristics.
Additional data can easily be obtained if needed, however, if the decision is ini-
tially unclear.

A Ph.D. researcher may travel into an African jungle for a one-year period of
intensive data-gathering on plants or animals. She will return with the raw material
for her thesis and will put much effort into analyzing the data she has, searching for
the messages that they contain. It will not be easy to obtain more data once her trip
is completed, so she must carefully analyze every aspect of what data she has.

Regression analysis is a technique that can be used in any of these situations. Our
purpose in this book is to explain in some detail something of the technique of
extracting, from data of the types just mentioned, the main features of the relationships
hidden or implied in the tabulated figures. (Nevertheless, the study of regression
analysis techniques will also provide certain insights into how to plan the collection
of data, when the opportunity arises. See, for example, Section 3.3.)

In any system in which variable quantities change, it is of interest to examine the
effects that some variables exert (or appear to exert) on others. There may in fact be
a simple functional relationship between variables; in most physical processes this is
the exception rather than the rule. Often there exists a functional relationship that is
too complicated to grasp or to describe in simple terms. In this case we may wish to
approximate to this functional relationship by some simple mathematical function,
such as a polynomial, which contains the appropriate variables and which graduates
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16 FITTING A STRAIGHT LINE BY LEAST SQUARES

or approximates to the true function over some limited ranges of the variables involved.
By examining such a graduating function we may be able to learn more about the
underlying true relationship and to appreciate the separate and joint effects produced
by changes in certain important variables.

Even where no sensible physical relationship exists between variables, we may wish
to relate them by some sort of mathematical equation. While the equation might be
physically meaningless, it may nevertheless be extremely valuable for predicting the
values of some variables from knowledge of other variables, perhaps under certain
stated restrictions.

In this book we shall use one particular method of obtaining a mathematical relation-
ship. This involves the initial assumption that a certain type of relationship, linear in
unknown parameters (except in Chapter 24, where nonlinear models are considered),
holds. The unknown parameters are estimated under certain other assumptions with
the help of available data, and a fitted equation is obtained. The value of the fitted
equation can be gauged, and checks can be made on the underlying assumptions to
see if any of these assumptions appears to be erroneous. The simplest example of this
process involves the construction of a fitted straight line when pairs of observations
(X1, ), (X3, Vo), ..., (X,, Y,) are available. We shall deal with this in a simple
algebraic way in Chapters 1-3. To handle problems involving large numbers of vari-
ables, however, matrix methods are essential. These are introduced in the context of
fitting a straight line in Chapter 4. Matrix algebra allows us to discuss concepts in a
larger linear least squares regression context in Chapters 5-16 and 19-23. Some non-
least-squares topics are discussed in Chapters 17 (ridge regression), 18 (generalized
linear models), 24 (nonlinear estimation), 25 (robust regression), and 26 (resam-
pling procedures).

We assume that anyone who uses this book has had a first course in statistics and
understands certain basic ideas. These include the ideas of parameters, estimates,
distributions (especially normal), mean and variance of a random variable, covariance
between two variables, and simple hypothesis testing involving one- and two-sided -
tests and the F-test. We believe, however, that a reader whose knowledge of these
topics is rusty or incomplete will nevertheless be able to make good progress after a
review of Chapter 0.

We do not intend this as a comprehensive textbook on all aspects of regression
analysis. Our intention is to provide a sound basic course plus material necessary to
the solution of some practical regression problems. We also add some excursions into
related topics.

We now take an early opportunity to introduce the reader to the data in Appendix
1A. Here we see 25 observations taken at intervals from a steam plant at a large
industrial concern. Ten variables, some of them in coded form, were recorded as
follows:

Pounds of steam used monthly, in coded form.
Pounds of real fatty acid in storage per month.
Pounds of crude glycerin made.
Average wind velocity (in mph).

Calendar days per month.

Operating days per month.

Days below 32°F.

Average atmospheric temperature (°F).
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1.0. INTRODUCTION: THE NEED FOR STATISTICAL ANALYSIS 17

9. Average wind velocity squared.
10. Number of start-ups.

We can distinguish two main types of variable at this stage. We shall usually call
these predictor variables and response variables. (For alternative terms, see below.)
By predictor variables we shall usually mean variables that can either be set to a
desired value (e.g., input temperature or catalyst feed rate) or else take values that
can be observed but not controlled (e.g., the outdoor humidity). As a result of changes
that are deliberately made, or simply take place in the predictor variables, an effect
is transmitted to other variables, the response variables (e.g., the final color or the
purity of a chemical product). In general, we shall be interested in finding out how
changes in the predictor variables affect the values of the response variables. If we
can discover a simple relationship or dependence of a response variable on just one
or a few predictor variables we shall, of course, be pleased. The distinction between
predictor and response variables is not always completely clear-cut and depends some-
times on our objectives. What may be considered a response variable at the midstage
of a process may also be regarded as a predictor variable in relation to (say) the
final color of the product. In practice, however, the roles of variables are usually
easily distinguished.

Other names frequently seen are the following:

Predictor variables = input variables = inputs
= X-variables = regressors
= independent variables.

(We shall try to avoid using the last of these names, because it is often misleading.
In a particular body of data, two or more “independent” variables may vary together
in some definite way due, perhaps, to the method in which an experiment is conducted.
This is not usually desirable—for one thing it restricts the information on the separate
roles of the variables—but it may often be unavoidable.)

Response variables = output variables = outputs
= Y-variables
= dependent variables.

Returning to the data in Appendix 1A, which we shall refer to as the steam data,
we examine the 25 sets of observations on the variables, one set for each of 25 different
months. Our primary interest here is in the monthly amount of steam produced and
how it changes due to variations in the other variables. Thus we shall regard variable
X, as a dependent or response variable, Y, in what follows, and the others as predictor
variables, X,, X, ..., X).

We shall see how the method of analysis called the method of least squares can
be used to examine data and to draw meaningful conclusions about dependency
relationships that may exist. This method of analysis is often called regression analysis.
(For historical remarks, see Section 1.8.)

Throughout this book we shall be most often concerned with relationships of
the form

Response variable = Model function + Random error.

The model function will usually be “known’ and of specified form and will involve
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the predictor variables as well as parameters to be estimated from data. The distribution
of the random errors is often assumed to be a normal distribution with mean zero,
and errors are usually assumed to be independent. All assumptions are usually checked
after the model has been fitted and many of these checks will be described.

(Note: Many engineers and others call the parameters constants and the predictors
parameters. Watch out for this possible difficulty in cross-discipline conversations!)

We shall present the least squares method in the context of the simplest application,
fitting the “best” straight line to given data in order to relate two variables X and Y,
and will discuss how it can be extended to cases where more variables are involved.

1.1. STRAIGHT LINE RELATIONSHIP BETWEEN TWO VARIABLES

In much experimental work we wish to investigate how the changes in one variable
affect another variable. Sometimes two variables are linked by an exact straight line
relationship. For example, if the resistance R of a simple circuit is kept constant, the
current [ varies directly with the voltage V applied, for, by Ohm’s law, I = V/R. If
we were not aware of Ohm’s law, we might obtain this relationship empirically by
making changes in V and observing I, while keeping R fixed and then observing that
the plot of I against V more or less gave a straight line through the origin. We say
“more or less” because, although the relationship actually is exact, our measurements
may be subject to slight errors and thus the plotted points would probably not fall
exactly on the line but would vary randomly about it. For purposes of predicting /
for a particular V (with R fixed), however, we should use the straight line through
the origin. Sometimes a straight line relationship is not exact (even apart from error)
yet can be meaningful nevertheless. For example, suppose we consider the height and
weight of adult males for some given population. If we plot the pair (Y;, Y,;) =
(height, weight), a diagram something like Figure 1.1 will result. (Such a presentation
is conventionally called a scatter diagram.)

Note that for any given height there is a range of observed weights, and vice versa.
This variation will be partially due to measurement errors but primarily due to variation
between individuals. Thus no unique relationship between actual height and weight
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Figure 1.1. Heights and weights of 30 American males.
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can be expected. But we can note that the average observed weight for a given observed
height increases as height increases. This locus of average observed weight for given
observed height (as height varies) is called the regression curve of weight on height.
Let us denote it by Y, = f(Y;). There also exists a regression curve of height on
weight, similarly defined, which we can denote by Y, = g(Y>). Let us assume that
these two ‘“‘curves” are both straight lines (which in general they may not be). In
general, these two curves are not the same, as indicated by the two lines in the figure.

Suppose we now found we had recorded an individual’s height but not his weight
and we wished to estimate this weight. What could we do? From the regression line
of weight on height we could find an average observed weight of individuals of the
given height and use this as an estimate of the weight that we did not record.

A pair of random variables such as (height, weight) follows some sort of bivariate
probability distribution. When we are concerned with the dependence of a random
variable Y on a quantity X that is variable but not randomly variable, an equation
that relates Y to X is usually called a regression equation. Although the name is,
strictly speaking, incorrect, it is well established and conventional. In nearly all of this
book we assume that the predictor variables are not subject to random variation, but
that the response variable is. From a practical point of view, this is seldom fully true
but, if it is not, a much more complicated fitting procedure is needed. (See Sections
3.4 and 9.7.) To avoid this, we use the least squares procedure only in situations where
we can assume that any random variation in any of the predictor variables is so small
compared with the range of that predictor variable observed that we can effectively
ignore the random variation. This assumption is rarely stated, but it is implicit in all
least squares work in which the predictors are assumed “fixed.” (The word “‘fixed”
means ‘“‘not random variables” in such a context; it does not mean that the predictors
cannot take a variety of values or levels.) For additional comments see Section 3.4.

We can see that whether a relationship is exactly a straight line or a line only
insofar as mean values are concerned, knowledge of the relationship will be useful.
(The relationship might, of course, be more complicated than a straight line but we
shall consider this later.)

A straight line relationship may also be a valuable one even when we know that
such a relationship cannot be true. Consider the response relationship shown in Figure
1.2. It is obviously not a straight line over the range 0 = X = 100. However, if we
were interested primarily in the range 0 < X =< 45, a straight line relationship evaluated
from observations in this range might provide a perfectly adequate representation of
the function in this range. The relationship thus fitted would, of course, not apply to
values of X outside this restricted range and could not be used for predictive purposes
outside this range.

Y
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Figure 1.2. A response relationship.
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Figure 1.3. A point P outside the data space, whose coordinates nevertheless lie within the ranges of
the predictor variables observed.

Similar remarks can be made when more than one predictor variable is involved.
Suppose we wish to examine the way in which a response Y depends on variables X,
X,, ..., X;,. We determine a regression equation from data that “cover’ certain
regions of the “X-space.” Suppose the point Xy = (X, X, . . . , Xio) lies outside the
regions covered by the original data. While we can mathematically obtain a predicted
value Y (Xy) for the response at the point X{, we must realize that reliance on such
a prediction is extremely dangerous and becomes more dangerous the further Xj lies
from the original regions, unless some additional knowledge is available that the
regression equation is valid in a wider region of the X-space. Note that it is sometimes
difficult to realize at first that a suggested point lies outside a region in a multidimen-
sional space. To take a simple example, consider the region indicated by the ellipse
in Figure 1.3, within which all the data points (X;, X,) lie; the corresponding Y values,
plotted vertically up from the page, are not shown. We see that there are points in
the region for which 1 = X, = 9 and for which 2.4 = X, = 6.3. Although the X, and
X, coordinates of P lie individually within these ranges, P itself lies outside the region.
A simple review of the printed data woulid often not detect this. When more dimensions
are involved, misunderstandings of this sort easily arise.

1.2. LINEAR REGRESSION: FITTING A STRAIGHT LINE BY LEAST SQUARES

We have mentioned that in many situations a straight line relationship can be valuable
in summarizing the observed dependence of one variable on another. We now show
how the equation of such a straight line can be obtained by the method of least squares
when data are available. Consider, in Appendix 1A, the 25 observations of variable
1 (pounds of steam used per month) and variable 8 (average atmospheric temperature
in degrees Fahrenheit). The corresponding pairs of observations are given in Table
1.1 and are plotted in Figure 1.4.

Let us tentatively assume that the regression line of variable 1, which we shall
denote by Y, on variable 8 (X) has the form 8; + 8, X. Then we can write the linear,
first-order model

Y=8+BX+e¢ (12.1)
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T A BL E 1.1. Twenty-five Observations of Variables 1 and 8

. Variable Number
Observation

Number 1(Y) 8 (X)
1 10.98 353
2 11.13 29.7
3 12.51 30.8
4 8.40 58.8
5 9.27 61.4
6 8.73 71.3
7 6.36 74.4
8 8.50 76.7
9 7.82 70.7

10 9.14 57.5
11 8.24 46.4
12 12.19 28.9
13 11.88 28.1
14 9.57 39.1
15 10.94 46.8
16 9.58 48.5
17 10.09 593
18 8.11 70.0
19 6.83 70.0
20 8.88 74.5
21 7.68 72.1
22 8.47 58.1
23 8.86 44.6
24 10.36 334
25 11.08 28.6

that is, for a given X, a corresponding observation Y consists of the value 8, + B X
plus an amount ¢, the increment by which any individual ¥ may fall off the regression
line. Equation (1.2.1) is the model of what we believe. B, + B8, X is the model function
here and 3, and B3, are called the parameters of the model. We begin by assuming that
the model holds; but we shall have to inquire at a later stage if indeed it does. In
many aspects of statistics it is necessary to assume a mathematical mode! to make
progress. It might be well to emphasize that what we are usually doing is to consider
or tentatively entertain our model. The model must always be critically examined
somewhere along the line. It is our “opinion” of the situation at one stage of the
investigation and our “‘opinion” must be changed if we find, at a later stage, that the
facts are against it.

Meaning of Linear Model

When we say that a model is linear or nonlinear, we are referring to linearity or
nonlinearity in the parameters. The value of the highest power of a predictor variable
in the model is called the order of the model. For example,

Y =08+ BX+ BnX" + e

is a second-order (in X) linear (in the B’s) regression model. Unless a model is
specifically called nonlinear it can be taken that it is linear in the parameters, and the
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Figure 1.4. Plot of the steam data for variables 1 (Y) and 8 (X).

word linear is usually omitted and understood. The order of the model could be of
any size. Notation of the form 8y, is often used in polynomial models; 3, is the parameter
that goes with X while 8, is the parameter that goes with X> = XX. The natural
extension of this sort of notation appears, for example, in Chapter 12, where B, is
the parameter associated with X;.X, and so on.

Least Squares Estimation

Now By, Bi, and € are unknown in Eq. (1.2.1), and in fact € would be difficult to
discover since it changes for each observation Y. However, 8, and B; remain fixed
and, although we cannot find them exactly without examining all possible occurrences
of Y and X, we can use the information provided by the 25 observations in Table 1.1
to give us estimates by and b, of 3y and B,; thus we can write

Y = by + b X, (12.2)
where ¥, read “Y hat,” denotes the predicted value of Y for a given X, when b, and
b, are determined. Equation (1.2.2) could then be used as a predictive equation;
substitution for a value of X would provide a prediction of the true mean value of Y
for that X.

The use of small roman letters by and b, to denote estimates of the parameters
given by Greek letters 3, and B, is standard. However, the notation B, and B3, for the
estimates is also frequently seen. We use the latter type of notation ourselves in
Chapter 24, for example.

Our estimation procedure will be that of least squares.

Under certain assumptions to be discussed in Chapter 5, the method of least squares
has certain properties. For the moment we state it as our chosen method of estimating
the parameters without a specific justification. Suppose we have available n sets of
observations (X, Y}), (X3, Y2), ..., (X,, Y,). (In our steam data example n = 25.)
Then by Eq. (1.2.1) we can write

Y, = ﬂn + ,81)(1 + €;, (123)
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fori=1,2,...,n,so that the sum of squares of deviation from the true line is

n

S=>¢e= 2 (Y, = By~ B X)) (1.2.4)

i=1

S is also called the sum of squares function. We shall choose our estimates b, and b,
to be the values that, when substituted for 8, and B, in Eq. (1.2.4), produce the least
possible value of S; see Figure 1.5. [Note that, in (1.2.4), X, Y; are the fixed numbers
that we have observed.] We can determine b, and b, by differentiating Eq. (1.2.4) first
with respect to 3, and then with respect to 3; and setting the results equal to zero. Now

as z
b‘é{; = —22 (Yz —Bo— Bl)(i)7
o (12.5)
N “
— =2 2 X(Yt = By — BlXi)a
4B, i=1
so that the estimates b, and b, are solutions of the two equations
2 (Yi — by~ bllYi) =0,
! (1.2.6)

2 X:(Ye — by — blxi) =0,
i=1

where we substitute (by, b,) for (B, B:1), when we equate Eq. (1.2.5) to zero. From
Eq. (1.2.6) we have

Y A

The line fitted by least squares
is the one that makes the sum
of squares of all these vertical
discrepancies as small as possible

Line

—

X

Figure 1.5. The vertical deviations whose sum of squares is minimized for the least squares procedure.
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iYi_nb()_bli X,:()

o o (1.2.7)
> XY, —by> X;—b > Xi=0
i=1 i=1 i=1

or

(12.8)
by > X+ b > Xi=> XY.
-1 i=1 i=1

These equations are called the normal equations. (Normal here means perpendicular,
or orthogonal, a geometrical property explained in Chapter 20. The normal equations
can also be obtained via a geometrical argument.)

The solution of Eq. (1.2.8) for b,, the slope of the fitted straight line, is

b = XY - [EX)EY))n _ 2(Xi— X)(Y.-Y)
O SXI-@EX)yin 2X-Xp

(12.9)

where all summations are from i = 1 to n and the two expressions for b, are just
slightly different forms of the same quantity. For, defining

X=X+ X,+ -+ X)/n=%X/n,
Y=Y, +Y,+ - +Y)n=2Y/n,
we have that
SX-X)Y,-YV)=2XY -X3Y,-YEX +nXY
=3XY ~nXY
=3 XY, — (EX)ZY)n.

This shows the equivalence of the numerators in (1.2.9), and a parallel calculation, in
which Y is replaced by X, shows the equivalence of the denominators. The quantity
3 X7 is called the uncorrected sum of squares of the X’s and (2 X,)*/n is the correction
for the mean of the X’s. The difference is called the corrected sum of squares of the
X’s. Similarly, £ X}Y; is called the uncorrected sum of products, and (£ X)(Z Y;)/n is
the correction for the means. The difference is called the corrected sum of products
of Xand Y.

Pocket-Calculator Form

The first form in Eq. (1.2.9) is normally used for pocket-calculator evaluation of b,,
because it is easier to work with and does not involve the tedious adjustment of each
X, and Y, to (X, — X) and (Y, — Y), respectively. To avoid rounding error, however,
it is best to carry as many significant figures as possible in this computation. (Such
advice is good in general; rounding is best done at the “reporting stage’ of a calculation,
not at intermediate stages.) Most digital computers obtain more accurate answers
using the second form in Eq. (1.2.9); this is because of their round-off characteristics
and the form in which most regression programs are written.
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A convenient notation, now and later, is to write

Sxy = 2(X; — /\_/)(K - ?)

=3(X, - X)Y;

=2 X(Y, - 7)

=S XY, (SX)E Y)/n
=3XY -nXY.

Note that all these forms are equivalent. Similarly, we can write

Sxx = E(Xi - )7)2

=3X - X)X,
=S X?— (S X)n
=3 X! nX?

and

Syy = E(Yv, - 7)2

=2Y!-(2Y)n
=3 Y?-nY2

The easily remembered formula for b, is then

b] = Sxy/SXX (1293)
The solution of Egs. (1.2.8) for b, the intercept at X = 0 of the fitted straight line, is
v=Y —bX. (1.2.10)

The predicted or fitted equation is ¥ = b, + b, X as in (1.2.2), we recall. Substituting Eq.
(1.2.10) into Eq. (1.2.2) gives the estimated regression equation in the alternative form

Y=Y +b(X-X), (1.2.11)

where b, is given by Eq. (1.2.9). From this we see immediately that if we set X =
X in (1.2.11), then Y = Y. This means that the point (X, Y) lies on the fitted line. In
other words, this least squares line contains the center of gravity of the data.

Calculations for the Steam Data

Let us now perform these calculations on the selected steam data given in Table 1.1.
We find the following:

n =25,

2Y, =1098 + 11.13 + - - - + 11.08 = 235.60,
Y =235.60/25 = 9.424,

22X, =353+297+---+28.6=1315,

X =1315/25 = 52.60,
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S XY, = (10.98)(35.3) + (11.13)(29.7) + - - - + (11.08)(28.6)
= 11821.4320,
S X2=(353)+ (29.7)% + - - - + (28.6)? = 76323.42,
YO SXI-CX)In Sy
_ 11821.4320 — (1315)(235.60)/25 _ —571.1280
76323.42 — (1315)/25 7154.42
= —0.079829.

The fitted equation is thus
Y=Y+b(X-X)
= 9.4240 — 0.079829( X — 52.60)
= 13.623005 — 0.079829.X.

The foregoing form of Y shows that b, = 13.623005. The fitted regression line is plotted
in Figure 1.6. We can tabulate for each of the 25 values X;, at which a Y, observation
is available, the fitted value Y; and the residual Y; — Y, as in Table 1.2. The residuals
are given to the same number of places as the original data. They are our “estimates
of the errors €’ and we write e, = Y, — Y, in a parallel notation.

Note that since ¥, = ¥ + by(X; — X),

Y=Y, =(Y,-Y)-b(X - X),

which we can sum to give

n n

2(”(“?;):; (Yi’“?)_blg (XE_X—)=O'

Br——T—r—7 77T T T T T T

12 Yor Xy =£(Xg) ]

11} o® —

¥ = 13,6230 — 0.0798 X

30 40 50 60 70 80
X3

Figure 1.6. Plot of the steam data—variables 1 (¥) and 8 (X)—and the least squares line.
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T A B L E 1.2. Observations, Fitted Values, and Residuals

Observation

Number Y Y, Y, — ¥,
1 10.98 10.81 0.17
2 11.13 11.25 -0.12
3 12.51 11.17 1.34
4 8.40 8.93 -0.53
5 9.27 872 0.55
6 8.73 7.93 0.80
7 6.36 7.68 -1.32
8 8.50 7.50 1.00
9 7.82 7.98 -0.16

10 9.14 9.03 0.11
11 8.24 9.92 -1.68
12 12.19 11.32 0.87
13 11.88 11.38 0.50
14 9.57 10.50 -0.93
15 10.94 9.89 1.05
16 9.58 9.75 -0.17
17 10.09 8.89 1.20
18 8.11 8.03 0.08
19 6.83 8.03 -1.20
20 8.88 7.68 1.20
21 7.68 7.87 -0.19
22 8.47 8.98 —-0.51
23 8.86 10.06 -1.20
24 10.36 10.96 -0.60
25 11.08 11.34 -0.26

This piece of algebra tells us that the residuals sum to zero, in theory. In practice, the
sum may not be exactly zero due to rounding. The sum of residuals in any regression
problem is always zero when there is a 3, term in the model as a consequence of the
first normal equation. The omission of 3, from a model implies that the response is
zero when all the predictor variables are zero. This is a very strong assumption, which
is usually unjustified. In a straight line model Y = 8, + ;X + €, omission of 3, implies
that the line passes through X = 0, Y = 0; that is, the line has a zero intercept 8, =
Dat X = 0.

Centering the Data

We note here, before the more general discussion in Section 16.2, that physical removal
of B, from the model is always possible by “centering” the data, but this is quite
different from setting 8, = 0. For example, if we write Eq. (1.2.1) in the form

Y-Y=B+BX-Y)+B(X-X)+e
or
y=B¢+ Bix te

say, where y = Y — Y, 3 = B, + 81X — Y, and x = X — X, then the least squares
estimates of 8¢ and 3, are given as follows:
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D - ) X - XYY - Y)
S(x; — X)? S(Xi—-X)y?

by

identical to Eq. (1.2.9), while
b=y —bx =0, sincex =y =0,

whatever the value of b,. Because this always happens, we can write and fit the
centered model as

Y_YZB](X_Y)+€,

omitting the B, (intercept) term entirely. We have lost one parameter but there is a
corresponding loss in the data since the quantities Y; — Y.i=1,2,...,n, represent
only (n — 1) separate pieces of information due to the fact that their sum is zero,
whereas Y|, Y,, ..., Y, represent n separate pieces of information. Effectively the
“lost” piece of information has been used to enable the proper adjustments to be
made to the model so that the intercept term can be removed. The model fit is exactly
the same as before but is written in a slightly different manner, pivoted around
(X, Y).

1.3. THE ANALYSIS OF VARIANCE

We now tackle the question of how much of the variation in the data has been
explained by the regression line. Consider the following identity:

Y, - Y=Y -Y—(Y,-Y). (1.3.1)

What this means geometrically for the fitted straight line is illustrated in Figure 1.7.
The residual ¢; = Y, — Y, is the difference between two quantities: (1) the deviation
of the observed Y; from the overall mean Y and (2) the deviation of the fitted Y; from
the overall mean Y. Note that the average of the ¥;, namely,

Y
Y p————— = +>~-—————
\ i _
)2 _____________________ Y, —Y
Y b -
Fitted line ¥ = by + b, X
> X

X

Figure 1.7. Geometrical meaning of the identity (1.3.1).



