
Prepare a note on logistic regression with all detail and lastly one exercise and solved example with 
with all values calculated . Full detail of the note

Here's a detailed note on Logistic Regression, including theoretical concepts, mathematical
formulation, advantages, disadvantages, a solved example, and an exercise at the end.

Logistic Regression: A Comprehensive Guide

1. Introduction to Logistic Regression

Logistic Regression is a statistical method used for binary classification problems. Unlike linear
regression, which predicts continuous values, logistic regression predicts the probability of a class label
(e.g., 0 or 1). It is widely used in machine learning, medical diagnosis, fraud detection, and many other
domains.

2. Why Not Linear Regression for Classification?

Linear regression predicts continuous values, but in classification tasks, we need discrete outputs (e.g.,
spam or not spam, pass or fail). If we apply linear regression, the predicted values may go beyond 0 and
1, which makes no sense for probability estimation.

Instead, we use logistic regression, which applies the sigmoid function (logistic function) to restrict
outputs between 0 and 1.

3. Mathematical Formulation

3.1 The Sigmoid Function

Logistic regression is based on the sigmoid function, also known as the logistic function, defined as:

where  is the linear combination of input features:

Here:

 is the bias term (intercept)
 are the model weights (coefficients)

 are the feature variables
 is the base of the natural logarithm

The sigmoid function transforms the linear combination  into a probability value between 0 and 1.

3.2 Hypothesis Function in Logistic Regression

The logistic regression model predicts the probability that an input belongs to class 1:

The decision rule for classification:

If , predict class 1
If , predict class 0

4. Cost Function (Log Loss)

Unlike linear regression (which uses mean squared error), logistic regression uses the log loss function,
also known as binary cross-entropy, to measure error:

where:

 = number of training samples
 = predicted probability for sample 
 = actual label (0 or 1)

Minimizing this cost function ensures that the model correctly classifies data points.

5. Gradient Descent for Optimization

To minimize the cost function, we use gradient descent, an iterative optimization algorithm:

where:

 = learning rate (step size)
 = gradient (derivative of cost function)

This updates the weights to minimize classification error.

6. Advantages and Disadvantages

6.1 Advantages

✅ Simple and easy to implement
✅ Works well for linearly separable data
✅ Provides probabilistic interpretation of predictions
✅ Efficient for small datasets

6.2 Disadvantages

❌ Assumes a linear decision boundary (not good for complex relationships)
❌ Not ideal for multi-class classification (requires extensions like Softmax regression)
❌ Sensitive to outliers

7. Solved Example

Problem Statement

A company wants to predict whether a customer will buy a product ( ) or not ( ) based on
their annual income ( ) and age ( ). The logistic regression equation is:

Given:

 (bias)
 (weight for income)
 (weight for age)

Customer’s income = $70,000$
Customer’s age = 45 years

Step 1: Compute Linear Combination 

Step 2: Apply Sigmoid Function

Approximating :

Step 3: Interpretation

Since , the model predicts the customer will not buy the product (Y=0).

8. Exercise

Problem Statement

A bank wants to predict whether a loan applicant will default ( ) or not ( ) based on their
credit score ( ) and loan amount ( ). The logistic regression equation is:

Given:

Applicant’s credit score = 680
Loan amount = $25,000$

Task: Compute the probability  and determine if the applicant will default.

This note provides a comprehensive understanding of logistic regression, its working, mathematical
foundation, and an application with a solved example and an exercise. Let me know if you need further
modifications! 🚀

Yes need exercise solved in detail

Here is the detailed solution for the exercise on logistic regression.

Exercise: Loan Default Prediction

A bank wants to predict whether a loan applicant will default ( ) or not ( ) based on their
credit score ( ) and loan amount ( ). The logistic regression model is:

Given:

 (bias term)
 (coefficient for credit score)

 (coefficient for loan amount)
Applicant’s credit score 
Applicant’s loan amount 

Step 1: Compute Linear Combination 

Substituting the values:

First, compute the individual terms:

Now sum them up:

Step 2: Compute Probability Using the Sigmoid Function

The sigmoid function is:

Substituting :

Since  is an extremely large number, the denominator becomes very large, making the fraction
approach zero:

Step 3: Interpretation

Since , the probability that the applicant will default on the loan is nearly zero.

Final Prediction:

Since , the model predicts the applicant will NOT default (Y=0).

Conclusion

The model predicts that the applicant is unlikely to default based on their credit score and loan
amount.
The logistic regression model effectively assigns a very low probability of default due to the high
negative impact of the large loan amount ( ).
This example illustrates how logistic regression helps in binary classification by estimating
probabilities and applying a decision rule.

This completes the detailed solution for the exercise. Let me know if you need further clarification! 🚀
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