CHAPTER 1

Introduction

1.1 WHY NEURAL NETWORKS AND WHY NOW?

As modern computers become ever more powerful, scientists continue to be chal-
lenged to use machines effectively for tasks that are relatively simple for humans.
Based on examples, together with some feedback from a “teacher,” we learn
easily to recognize the letter A or distinguish a cat from a bird. More experience
allows us to refine our responses and improve our performance. Although even-
tually, we may be able to describe rules by which we can make such decisions,
these do not necessarily reflect the actual process we use. Even without a teacher,
we can group similar patterns together. Yet another common human activity is
trying to achieve a goal that involves maximizing a resource (time with one’s
family, for example) while satisfying certain constraints (such as the need to earn
a living). Each of these types of problems illustrates tasks for which computer
solutions may be sought.

Traditional, sequential, logic-based digital computing excels in many areas,
but has been less successful for other types of problems. The development of
artificial neural networks began approximately 50 years ago, motivated by a desire
to try both to understand the brain and to emulate some of its strengths. Early
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successes were overshadowed by rapid progress in digital computing. Also, claims
made for capabilities of early models of neural networks proved to be exaggerated,
casting doubts on the entire field.

Recent renewed interest in neural networks can be attributed to several
factors. Training techniques have been developed for the more sophisticated net-
work architectures that are able to overcome the shortcomings of the early, simple
neural nets. High-speed digital computers make the simulation of neural processes
more feasible. Technology is now available to produce specialized hardware for
neural networks. However, at the same time that progress in traditional computing
has made the study of neural networks easier, limitations encountered in the
inherently sequential nature of traditional computing have motivated some new
directions for neural network research. Fresh approaches to parallel computing
may benefit from the study of biological neural systems, which are highly parallel.
The level of success achieved by traditional computing approaches to many types
of problems leaves room for a consideration of alternatives.

Neural nets are of interest to researchers in many areas for different reasons.
Electrical engineers find numerous applications in signal processing and control
theory. Computer engineers are intrigued by the potential for hardware to im-
plement neural nets efficiently and by applications of neural nets to robotics.
Computer scientists find that neural nets show promise for difficult problems in
areas such as artificial intelligence and pattern recognition. For applied mathe-
maticians, neural nets are a powerful tool for modeling problems for which the
explicit form of the relationships among certain variables is not known.

There are various points of view as to the nature of a neural net. For example,
is it a specialized piece of computer hardware (say, a VLSI chip) or a computer
program? We shall take the view that neural nets are basically mathematical
models of information processing. They provide a method of representing rela-
tionships that is quite different from Turing machines or computers with stored
programs. As with other numerical methods, the availability of computer re-
sources, either software or hardware, greatly enhances the usefulness of the ap-
proach, especially for large problems.

The next section presents a brief description of what we shall mean by a
neural network. The characteristics of biological neural networks that serve as
the inspiration for artificial neural networks, or neurocomputing, are also men-
tioned. Section 1.3 gives a few examples of where neural networks are currently
being developed and applied. These examples come from a wide range of areas.
Section 1.4 introduces the basics of how a neural network is defined. The key
characteristics are the net’s architecture and training algorithm. A summary of
the notation we shall use and illustrations of some common activation functions
are also presented. Section 1.5 provides a brief history of the development of
neural networks. Finally, as a transition from the historical context to descriptions
of the most fundamental and common neural networks that are the subject of the
remaining chapters, we describe the McCulloch-Pitts neuron,
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1.2 WHAT IS A NEURAL NET?
1.2.1 Artificial Neural Networks

An artificial neural network is an information-processing system that has certain
performance characteristics in common with biological neural networks. Artificial
neural networks have been developed as generalizations of mathematical models
of human cognition or neural biology, based on the assumptions that:

1. Information processing occurs at many simple elements called neurons.

2. Signals are passed between neurons over connection links.

3. Each connection link has an associated weight, which, in a typical neural
net, multiplies the signal transmitted.

4. Each neuron applies an activation function (usually nonlinear) to its net input
(sum of weighted input signals) to determine its output signal.

A neural network is characterized by (1) its pattern of connections between the
neurons (called its architecture), (2) its method of determining the weights on the
connections (called its training, or learning, algorithm), and (3) its activation
function. |

Since what distinguishes (artificial) neural networks from other approaches
to information processing provides an introduction to both how and when to use
neural networks, let us consider the defining characteristics of neural networks
further.

A neural net consists of a large number of simple processing elements called
neurons, units, cells, or nodes. Each neuron is connected to other neurons by
means of directed communication links, each with an associated weight. The
weights represent information being used by the net to solve a problem. Neural
nets can be applied to a wide variety of problems, such as storing and recalling
data or patterns, classifying patterns, performing general mappings from input
patterns to output patterns, grouping similar patterns, or finding solutions to con-
strained optimization problems.

Each neuron has an internal state, called its activation or activity level, which
is a function of the inputs it has received. Typically, a neuron sends its activation
as a signal to several other neurons. It is important to note that a neuron can send
only one signal at a time, although that signal is broadcast to several other neurons.:

For example, consider a neuron Y, illustrated in Figure 1.1, that receives
inputs from neurons X, X>, and Xs. The activations (output signals) of these
neurons are x;, x», and x;, respectively. The weights on the connections from
X1, X2, and X; to neuron Y are w,, wa, and ws, respectively. The net input, y_in,
to neuron Y is the sum of the weighted signals from neurons X, X, and X3, i.e.,

y—in = wix; + waxs + waxs.
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®_/ Figure 1.1 A simple (artificial) neuron.

The activation y of neuron Y is given by some function of its net input,
y = f(y-in), e.g., the logistic sigmoid function (an S-shaped curve)

1

F&) =17 exp(—x)

or any of a number of other activation functions. Several common activation
functions are illustrated in Section 1.4.3. .

Now suppose further that neuron Y is connected to neurons Z; and Z, with
weights v and v,, respectively, as shown in Figure 1.2. Neuron Y sends its signal
y to each of these units. However, in general, the values received by neurons Z |
and Z, will be different, because each signal is scaled by the appropriate weight,
v1 Or v3. In a typical net, the activations z, and z, of neurons Z 1 and Z, would
depend on inputs from several or even many neurons, not just one, as shown in
this simple example.

Although the neural network in Figure 1.2 is very simple, the presence of
a hidden unit, together with a nonlinear activation function, gives it the ability to
solve many more problems than can be solved by a net with only input and output
units. On the other hand, it is more difficult to train (i.e., find optimal values for
the weights) a net with hidden units. The arrangement of the units (the architecture
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Figure 1.2 A very simple neural network.
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of the net) and the method of training the net are discussed further in Section 1.4.
A detailed consideration of these iideas for specific nets, together with simple
examples of an application of each net, is the focus of the following chapters.

1.2.2 Biologicai Neural Networks

The extent to which a neural network models a particular biological neural system
varies. For some researchers, this is a primary concern; for others, the ability of
the net to perform useful tasks (such as approximate or represent a function) is
more important than the biological plausibility of the net. Although our interest
lies almost exclusively in the computational capabilities of neural networks, we
shall present a brief discussion of some features of biological neurons that may
help to clarify the most important characteristics of artificial neural networks. In
addition to being the original inspiration for artificial nets, biological neural sys-
tems suggest features that have distinct computational advantages.

There is a close analogy between the structure of a biological neuron (i.e.,
a brain or nerve cell) and the processing element (or artificial neuron) presented
in the rest of this book. In fact, the structure of an individual neuron varies much
less from species to species than does the organization of the system of which
the neuron is an element.

A biological neuron has three types of components that are of particular
interest in understanding an artificial neuron: its dendrites, soma, and axon. The
many dendrites receive signals from other neurons. The signals are electric im-
pulses that are transmitted across a synaptic gap by means of a chemical process.
The action of the chemical transmitter modifies the incoming signal (typically, by
scaling the frequency of the signals that are received) in a manner similar to the
action of the weights in an artificial neural network.

The soma, or cell body, sums the incoming signals. When sufficient input
is received, the cell fires; that is, it transmits a signal over its axon to other cells.
It is often supposed that a cell either fires or doesn’t at any instant of time, so
that transmitted signals can be treated as binary. However, the frequency of firing
varies and can be viewed as a signal of either greater or lesser magnitude. This
corresponds to looking at discrete time steps and summing all activity (signals
received or signals sent) at a particular point in time.

The transmission of the signal from a particular neuron is accomplished by
an action potential resulting from differential concentrations of ions on either side
of the neuron’s axon sheath (the brain’s ‘‘white matter’’). The ions most directly
involved are potassium, sodium, and chloride.

A generic biological neuron is illustrated in Figure 1.3, together with axons
from two other neurons (from which the illustrated neuron could receive signals)
and dendrites for two other neurons (to which the original neuron would send
signals). Several key features of the processing elements of artificial neural net-
works are suggested by the properties of biological neurons, viz., that:
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The processing element receives many signals.
Signals may be modified by a weight at the receiving synapse.
The processing element sums the weighted inputs.

Under appropriate circumstances (sufficient input), the neuron transmits a
single output.

5. The output from a particular neuron may go to many other neurons (the
axon branches).

Ll

Other features of artificial neural networks that are suggested by biological neu-
rons are:

6. Information processing is local (although other means of transmission, such
as the action of hormones, may suggest means of overall process control).
7. Memory is distributed:
a. Long-term memory resides in the neurons’ synapses or weights.
b. Short-term memory corresponds to the signals sent by the neurons.
8. A synapse’s strength may be modified by experience.

9. Neurotransmitters for synapses may be excitatory or inhibitory.

Yet another important characteristic that artificial neural networks share
with biological neural systems is fault tolerance. Biological neural systems are
fault tolerant in two respects. First, we are able to recognize many input signals
that are somewhat different from any signal we have seen before. An example of
this is our ability to recognize a person in a picture we have not seen before or
to recognize a person after a long period of time.

Second, we are able to tolerate damage to the neural system itself. Humans
are born with as many as 100 billion neurons. Most of these are in the brain, and
most are not replaced when they die [Johnson & Brown, 1988]. In spite of our
continuous loss of neurons, we continue to learn. Even in cases of traumatic neural
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Figure 1.3 Biological neuron.
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loss, other neurons can sometimes be trained to take over the functions of the
damaged cells. In a similar manner, artificial neural networks can be designed to
be insensitive to small damage to the network, and the network can be retrained
in cases of significant damage (e.g., loss of data and some connections).

Even for uses of artificial neural networks that are not intended primarily
to model biological neural systems, attempts to achieve biological plausibility may
lead to improved computational features. One example is the use of a planar array
of neurons, as is found in the neurons of the visual cortex, for Kohonen's self-
organizing maps (see Chapter 4). The topological nature of these maps has com-
putational advantages, even in applications where the structure of the output units
is not itself significant.

Other researchers have found that computationally optimal groupings of
artificial neurons correspond to biological bundles of neurons [Rogers & Kabrisky,
1989]. Separating the action of a backpropagation net into smaller pieces to make
it more local (and therefore, perhaps more biologically plausible) also allows im-
provement in computational power (cf. Section 6.2.3) [D. Fausett, 1990].

1.3 WHERE ARE NEURAL NETS BEING USED?

The study of neural networks is an extremely interdisciplinary field, both in its
development and in its application. A brief sampling of some of the areas in which
neural networks are currently being applied suggests the breadth of their appli-

cability. The examples range from commercial successes to areas of active re-
search that show promise for the future.

1.3.1 Signal Processing

There are many applications of neural networks in the general area of signal
processing. One of the first commercial applications was (and still is) to suppress
noise on a telephone line. The neural net used for this purpose is a form of
ADALINE. (We discuss ADALINEs in Chapter 2.) The need for adaptive echo can-
celers has become more pressing with the development of transcontinental sat-
ellite links for long-distance telephone circuits\NThe two-way round-trip time delay
for the radio transmission is on the order of half a second. The switching involved -
in conventional echo suppression is very disruptive with path delays of this length.
Even in the case of wire-based telephone transmission, the repeater amplifiers
introduce echoes in the signal.

The adaptive noise cancellation idea is quite simple. At the end of a long-
distance line, the incoming signal is applied to both the telephone system com-
ponent (called the hybrid) and the adaptive filter (the ADALINE type of neural net).
The difference between the output of the hybrid and the output of the ADALINE
is the error, which is used to adjust the weights on the ADALINE. The ADALINE

is trained to remove the noise (echo) from the hybrid’s output signal. (See Widrow
and Stearns, 1985, for a more detailed discussion.)
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1.3.2 Control

The difficulties involved in backing up a trailer are obvious to anyone who has
either attempted or watched a novice attempt this maneuver. However, a driver
with experience accomplishes the feat with remarkable ease. As an example of
the application of neural networks to control problems, consider the task of train-
ing a neural *‘truck backer-upper’’ to provide steering directions to a trailer truck
attempting to back up to a loading dock [Nguyen & Widrow, 1989; Miller, Sutton,

& Werbos, 1990]. Information is available describing the position of the cab of
the truck, the position of the rear of the trailer, the (fixed) position of the loading
dock, and the angles that the truck and the trailer make with the loading dock.
The neural net is able to learn how to steer the truck in order for the trailer to
reach the dock, starting with the truck and trailer in any initial configuration that
allows enough clearance for a solution to be possible. To make the problem more
challenging, the truck is allowed only to back up.

The neural net solution to this problem uses two modules. The first (called
the emulator) learns to compute the new position of the truck, given its current
position and the steering angle. The truck moves a fixed distance at each time
step. This module learns the ‘“‘feel”” of how a trailer truck responds to various
steering signals, in much the same way as a driver learns the behavior of such a
rig. The emulator has several hidden units and is trained using backpropagation
(which is the subject of Chapter 6).

The second module is the controller. After the emulator is trained, the con-
troller learns to give the correct series of steering signals to the truck so that the
trailer arrives at the dock with its back parallel to the dock. At each time step,
the controller gives a steering signal and the emulator determines the new position
of the truck and trailer. This process continues until either the trailer reaches the
dock or the rig jackknifes. The error is then determined and the weights on the
controller are adjusted.

As with a driver, performance improves with practice, and the neural con-
troller learns to provide a series of steering signals that direct the truck and trailer
to the dock, regardless of the starting position (as long as a solution is possible).
Initially, the truck may be facing toward the dock, may be facing away from the
dock, or may be at any angle in between. Similarly, the angle between the truck
and the trailer may have an initial value short of that in a jack-knife situation.
The training process for the controller is similar to the recurrent backpropagation
described in Chapter 7.

1.3.3 Pattern Recognition
Many interesting problems fall into the general area of pattern recognition. One

specific area in which many neural network applications have been developed is
the automatic recognition of handwritten characters (digits or letters). The large
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variation in sizes, positions, and styles of writing make this a difficult problem
for traditional techniques. It is a good example, however, of the type of infor-
mation processing that humans can perform relatively easily.

General-purpose multilayer neural nets, such as the backpropagation net (a
multilayer net trained by backpropagation) described in Chapter 6, have been
used for recognizing handwritten zip codes [Le Cun et al., 1990]. Even when an
application is based on a standard training algorithm, it is quite common to cus-
tomize the architecture to improve the performance of the application. This back-
propagation net has several hidden layers, but the pattern of connections from
one layer to the next is quite localized.

An alternative approach to the problem of recognizing handwritten char-
acters is the ‘‘neocognitron’ described in Chapter 7. This net has several layers,
each with a highly structured pattern of connections from the previous layer and
to the subsequent layer. However, its training is a layer-by-layer process, spe-
cialized for just such an application.

1.3.4 Medicine

One of many examples of the application of neural networks to medicine was
developed by Anderson et al. in the mid-1980s [Anderson, 1986; Anderson,
Golden, and Murphy, 1986]. It has been called the ‘‘Instant Physician’’ [Hecht-
Nielsen, 1990]. The idea behind this application is to train an autoassociative
memory neural network (the *‘Brain-State-in-a-Box,”’ described in Section 3.4.2)
to store a large number of medical records, each of which includes information
on symptoms, diagnosis, and treatment for a particular case. After training, the
net can be presented with input consisting of a set of symptoms; it will then find
the full stored pattern that represents the ‘‘best’ diagnosis and treatment.

The net performs surprisingly well, given its simple structure. When a par-
ticular set of symptoms occurs frequently in the training set, together with a unique
diagnosis and treatment, the net will usually give the same diagnosis and treat-
ment. In cases where there are ambiguities in the training data, the net will give
the most common diagnosis and treatment. In novel situations, the net will pre-
scribe a treatment corresponding to the symptom(s) it has seen before, regardless
of the other symptoms that are present.

1.3.5 Speech Production

Learning to read English text aloud is a difficult task, because the correct phonetic
pronunciation of a letter depends on the context in which the letter appears. A
traditional approach to the problem would typically involve constructing a set of
rules for the standard pronunciation of various groups of letters, together with a
look-up table for the exceptions.

One of the most widely known examples of a neural network approach to
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the problem of speech production is NETtalk {Sejnowski and Rosenberg, 1986],
a multilayer neural net (i.e., a net with hidden units) similar to those described
in Chapter 6. In contrast to the need to construct rules and look-up tables for the
exceptions, NETtalk’s only requirement is a set of examples of the written input,
together with the correct pronunciation for it. The written input includes both the
letter that is currently being spoken and three letters before and after it (to provide
a context). Additional symbols are used to indicate the end of a word or punc-
tuation. The net is trained using the 1,000 most common English words. After
training, the net can read new words with very few errors; the errors that it does
make are slight mispronunciations, and the intelligibility of the speech is quite
good. '

It is interesting that there are several fairly distinct stages to the response
of the net as training progresses. The net learns quite quickly to distinguish vowels
from consonants; however, it uses the same vowel for all vowels and the same
consonant for all consonants at this first stage. The result is a babbling sound.
The second stage of learning corresponds to the net recognizing the boundaries
between words; this produces a pseudoword type of response. After as few as 10
passes through the training data, the text is intelligible. Thus, the response of the
net as training progresses is similar to the development of speech in small children.

1.3.6 Speech Recognition

Progress is being made in the difficult area of speaker-independent recognition
of speech. A number of useful systems now have a limited vocabulary or grammar
or require retraining for different speakers. Several types of neural networks have
been used for speech recognition, including multilayer nets (see Chapter 6) or
multilayer nets with recurrent connections (see Section 7.2). Lippmann (1989)
summarizes the characteristics of many of these nets.

One net that is of particular interest, both because of its level of development
toward a practical system and because of its design, was developed by Kohonen
using the self-organizing map (Chapter 4). He calls his net a ‘‘phonetic type-
writer.”” The output units for a self-organizing map are arranged in a two-dimen-
sional array (rectangular or hexagonal). The input to the net is based on short
segments (a few milliseconds long) of the speech waveform. As the net groups
similar inputs, the clusters that are formed are positioned so that different ex-
amples of the same phoneme occur on output units that are close together in the
output array.

After the speech input signals are mapped to the phoneme regions (which
has been done without telling the net what a phoneme is), the output units can
be connected to the appropriate typewriter key to construct the phonetic type-
writer. Because the correspondence between phonemes and written letters is very
regular in Finnish (for which the net was developed), the spelling is often correct.
See Kohonen (1988) for a more extensive description.
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1.3.7 Business

Neural networks are being applied in a number of business settings [Harston,
1990]. We mention only one of many examples here, the mortgage assessment
work by Nestor, Inc. [Collins, Ghosh, & Scofield, 1988a, 1988b].

Although it may be thought that the rules which form the basis for mortgage
underwriting are well understood, it is difficult to specify completely the process
by which experts make decisions in marginal cases. In addition, there is a large
financial reward for even a small reduction in the number of mortgages that be-
come delinquent. The basic idea behind the neural network approach to mortgage
risk assessment is to use past experience to train the net to provide more consistent
and reliable evaluation of mortgage applications.

Using data from several experienced mortgage evaluators, neural nets were
trained to screen mortgage applicants for mortgage origination underwriting and
mortgage insurance underwriting. The purpose in each of these is to determine
whether the applicant should be given a loan. The decisions in the second kind
of underwriting are more difficult, because only those applicants assessed as
higher risks are processed for mortgage insurance. The training input includes
information on the applicant’s years of employment, number of dependents, cur-
rent income, etc., as well as features related to the mortgage itself, such as the
loan-to-value ratio, and characteristics of the property, such as its appraised value.
The target output from the net is an *‘accept’ or ‘‘reject’’ response.

In both kinds of underwriting, the neural networks achieved a high level of
agreement with the human experts. When disagreement did occur, the case was
often a marginal one where the experts would also disagree. Using an independent
measure of the quality of the mortgages certified, the neural network consistently
made better judgments than the experts. In effect, the net learned to form a
consensus from the experience of all of the experts whose actions had formed
the basis for its training.

A second neural net was trained to evaluate the risk of default on a loan,
based on data from a data base consisting of 111,080 applications, 109,072 of
which had no history of delinquency. A total of 4,000 training samples were se-
lected from the data base. Although delinquency can result from many causes
that are not reflected in the information available on a loan application, the pre-
dictions the net was able to make produced a 12% reduction in delinquencies.

1.4 HOW ARE NEURAL NETWORKS USED?

Let us now consider some of the fundamental features of how neural networks
operate. Detailed discussions of these ideas for a number of specific nets are
presented in the remaining chapters. The building blocks of our examination here
are the network architectures and the methods of setting the weights (training).
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We also illustrate several typical activation functions and conclude the section
with a summary of the notation we shall use throughout the rest of the text.

1.4.1 Typical Architectures

Often, it is convenient to visualize neurons as arranged in layers. Typically, neu-
rons in the same layer behave in the same manner. Key factors in determining
the behavior of a neuron are its activation function and the pattern of weighted
connections over which it sends and receives signals. Within each layer, neurons
usually have the same activation function and the same pattern of connections to
other neurons. To be more specific, in many neural networks, the neurons within
a layer are either fully interconnected or not interconnected at all. If any neuron
in a layer (for instance, the layer of hidden units) is connected to a neuron in
another layer (say, the output layer), then each hidden unit is connected to every
output neuron.

The arrangement of neurons into layers and the connection patterns within
and between layers is called the net architecture. Many neural nets have an input
layer in which the activation of each unit is equal to an external input signal. The
net illustrated in Figure 1.2 consists of input units, output units, and one hidden
unit (a unit that is neither an input unit nor an output unit).

Neural nets are often classified as single layer or muitilayer. In determining
the number of layers, the input units are not counted as a layer, because they
perform no computation. Equivalently, the number of layers in the net can be
defined to be the number of layers of weighted interconnect links between the
slabs of neurons. This view is motivated by the fact that the weights in a net
contain extremely important information. The net shown in Figure 1.2 has two
layers of weights.

The single-layer and multilayer nets illustrated in Figures 1.4 and 1.5 are
examples of feedforward nets—nets in which the signals flow from the input units
to the output units, in a forward direction. The fuily interconnected competitive
net in Figure 1.6 is an example of a recurrent net, in which there are closed-loop
signal paths from a unit back to itself.

Single-Layer Net

A single-layer net has one layer of connection weights. Often, the units can be
distinguished as input units, which receive signals from the outside world, and
output units, from which the response of the net can be read. In the typical single-
layer net shown in Figure 1.4, the input units are fully connected to output units
but are not connected to other input units, and the output units are not connected
to other output units. By contrast, the Hopfield net architecture, shown in Figure
3.7, is an example of a single-layer net in which all units function as both input
and output units. _

For pattern classification, each output unit corresponds to a particular cat-
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One Layer Output
Units of Weights Units  Figure 1.4 A single-layer neural net.

Hidden Output
Units

Figure 1.5 A multilayer neural net.
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1 Figure 1.6 Competitive layer.

egory to which an input vector may or may not belong. Note that for a single-
layer net, the weights for one output unit do not influence the weights for other
output units. For pattern association, the same architecture can be used, but now
the overall pattern of output signals gives the response pattern associated with
the input signal that caused it to be produced. These two examples illustrate the
fact that the same type of net can be used for different problems, depending on
the interpretation of the response of the net.

On the other hand, more complicated mapping problems may require a mul-
tilayer network. The characteristics of the problems for which a single-layer net
is satisfactory are considered in Chapters 2 and 3. The problems that require
multilayer nets may still represent a classification or association of patterns; the
type of problem influences the choice of architecture, but does not uniquely de-
termine it. '

Multilayer net

A multilayer net is a net with one or more layers (or levels) of nodes (the so-
called hidden units) between the input units and the output units. Typically, there
is a layer of weights between two adjacent levels of units (input, hidden, or output).
Multilayer nets can solve more complicated problems than can single-layer nets,
but training may be more difficult. However, in some cases, training may be more
successful, because it is possible to solve a problem that a single-layer net cannot
be trained to perform correctly at all.

Competitive layer

A competitive layer forms a part of a large number of neural networks. Several
examples of these nets are discussed in Chapters 4 and 5. Typically, the inter-
connections between neurons in the competitive layer are not shown in the ar-
chitecture diagrams for such nets. An example of the architecture for a competitive
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layer is given in Figure 1.6; the competitive interconnections have weights of —e.
The operation of a winner-take-all competition, MAXNET [Lippman, 1987], is de-
scribed in Section 4.1.1.

1.4.2 Setting the Weights

In addition to the architecture, the method of setting the values of the weights
(training) is an important distinguishing characteristic of different neural nets. For
convenience, we shall distinguish two types of training—supervised and unsu-
pervised—{for a neural network; in addition, there are nets whose weights are
fixed without an iterative training process.

Many of the tasks that neural nets can be trained to perform fall into the
areas of mapping, clustering, and constrained optimization. Pattern classification
and pattern association may be considered special forms of the more general
problem of mapping input vectors or patterns to the specified output vectors or
patterns.

There is some ambiguity in the labeling of training methods as supervised
or unsupervised, and some authors find a third category, self-supervised training,
useful. However, in general, there is a useful correspondence between the type
of training that is appropriate and the type of problem we wish to solve. We
summarize here the basic characteristics of supervised and unsupervised training
and the types of problems for which each, as well as the fixed-weight nets, is
typically used.

Supervised training

In perhaps the most typical neural net setting, training is accomplished by pre-
senting a sequence of training vectors, or patterns, each with an associated target
output vector. The weights are then adjusted according to a learning algorithm.
This process is known as supervised training.

Some of the simplest (and historically earliest) neural nets are designed to
perform pattern classification, i.e., to classify an input vector as either belonging
or not belonging to a given category. In this type of neural net, the output is a
bivalent element, say, either 1 (if the input vector belongs to the category) or —1
(if it does not belong). In the next chapter, we consider several simple single-
layer nets that were designed or typically used for pattern classification. These
nets are trained using a supervised algorithm. The characteristics of a classifi-
cation problem that determines whether a single-layer net is adequate are con-
sidered in Chapter 2 also. For more difficult classification problems, a multilayer
net, such as that trained by backpropagation (presented in Chapter 6) may be
better.

Pattern association is another special form of a mapping problem, one in
which the desired output is not just a “‘yes’ or ‘‘no,”’ but rather a pattern. A
neural net that is trained to associate a set of input vectors with a corresponding
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set of output vectors is called an associative memory. If the desired output vector
is the same as the input vector, the net is an autoassociative memory; if the output
target vector is different from the input vector, the net is a heteroassociative
memory. After training, an associative memory can recall a stored pattern when
it is given an input vector that is sufficiently similar to a vector it has learned.
Associative memory neural nets, both feedforward and recurrent, are discussed
in Chapter 3.

Multilayer neural nets can be trained to perform a nonlinear mapping from
an n-dimensional space of input vectors (n-tuples) to an m-dimensional output
space—i.e., the output vectors are m-tuples.

The single-layer nets in Chapter 2 (pattern classification nets) and Chapter
3 (pattern association nets) use supervised training (the Hebb rule or the delta
rule). Backpropagation (the generalized delta rule) is used to train the multilayer
nets in Chapter 6. Other forms of supervised learning are used for some of the
nets in Chapter 4 (learning vector quantization and counterpropagation) and Chap-
ter 7. Each learning algorithm will be described in detail, along with a description
of the net for which it is used.

Unsupervised training

Self-organizing neural nets group similar input vectors together without the use
of training data to specify what a typical member of each group looks like or to
which group each vector belongs. A sequence of input vectors is provided, but
no target vectors are specified. The net modifies the weights so that the most
similar input vectors are assigned to the same output (or cluster) unit. The neural
net will produce an exemplar (representative) vector for each cluster formed. Self-
organizing nets are described in Chapters 4 (Kohonen self-organizing maps) and
Chapter 5 (adaptive resonance theory).

Unsupervised learning is also used for other tasks, in addition to clustering.
Examples are included in Chapter 7.

Fixed-weight nets

Still other types of neural nets can solve constrained optimization problems. Such
nets may work well for problems that can cause difficulty for traditional tech-
niques, such as problems with conflicting constraints (i.e., not all constraints can
be satisfied simultaneously). Often, in such cases, a nearly optimal solution (which
the net can find) is satisfactory. When these nets are designed, the weights are
set to represent the constraints and the quantity to be maximized or minimized.
The Boltzmann machine (without learning) and the continuous Hopfield net
(Chapter 7) can be used for constrained optimization problems. ’
Fixed weights are also used in contrast-enhancing nets (see Section 4.1).
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1.4.3 Common Activation Functions

As mentioned before, the basic operation of an artificial neuron involves summing
its weighted input signal and applying an output, or activation, function. For the
input units, this function is the identity function (see Figure 1.7). Typically, the
same activation function is used for all neurons in any particular layer of a neural
net, although this is not required. In most cases, a nonlinear activation function
is used. In order to achieve the advantages of multilayer nets, compared with the
limited capabilities of single-layer nets, nonlinear functions are required (since
the results of feeding a signal through two or more layers of linear processing
elements—i.e., elements with linear activation functions—are no different from
what can be obtained using a single layer).

(i) Identity function:
f(x) =x for all x.

Single-layer nets often use a step function to convert the net input, which
is a continuously valued variable, to an output unit that is a binary (1 or 0) or
bipolar (1 or —1) signal (see Figure 1.8). The use of a threshold in this regard is
discussed in Section 2.1.2. The binary step function is also known as the threshold
function or Heaviside function.

(if) Binary step function (with threshold 6):

1 ifx=o0
fu)“{o ifx <6

Sigmoid functions (S-shaped curves) are useful activation functions. The
logistic function and the hyperbolic tangent functions are the most common. They
are especially advantageous for use in neural nets trained by backpropagation,
because the simple relationship between the value of the function at a point and
the value of the derivative at that point reduces the computational burden during
training.

The logistic function, a sigmoid function with range from 0 to 1, is often

Figure 1.7 Identity function.



18 Introduction Chap. 1

fx)

Figure 1.8 Binary step function.

used as the activation function for neural nets in which the desired output values
either are binary or are in the interval between 0 and 1. To emphasize the range
of the function, we will call it the binary sigmoid; it is also called the logistic
sigmoid. This function is illustrated in Figure 1.9 for two values of the steepness
parameter o.

(iii) Binary sigmoid:

_r

1 + exp(—ox) '
F'(x) = af(0) [1 = f(x)).

As is shown in Section 6.2.3, the logistic sigmoid function can be scaled to
have any range of values that is appropriate for a given problem. The most com-
mon range is from — 1 to 1; we call this sigmoid the bipolar sigmoid. It is illustrated
in Figure 1.10 for ¢ = 1.

fx) =

fx)

Figure 1.9 Binary sigmoid. Steepness parameters o = 1 and o = 3.
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Figure 1.10 Bipolar sigmoid.

(iv) Bipolar sigmoid:

2
glx) = 2f(x) -1 = TF exp(—on)
_ 1 — exp(—ox)
"1+ exp(—ox)
g'(x) = g-[l + g1 - g(o)l.

The bipolar sigmoid is closely related to the hyperbolic tangent function,
which is also often used as the activation function when the desired range of
output values is between —1 and 1. We illustrate the correspondence between
the two for ¢ = 1. We have

_ 1 — exp(—x)
g0 T 1+ exp(—x)

En

The hyperbolic tangent is
exp(x) — exp(—x)
exp(x) + .exp(—x)

_ 1 = exp(—2x)
S 1+ exp(=2x)

h(x) =

The derivative of the hyperbolic tangent is
h'(x) = [1 + h()I1 — h(x)]. |

For binary data (rather than continuously valued data in the range from 0
to 1), it is usually preferable to convert to bipolar form and use the bipolar sigmoid
or hyperbolic tangent. A more extensive discussion of the choice of activation
functions and different forms of sigmoid functions is given in Section 6.2.2.
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1.4.4 Summary of Notation

The following notation will be used throughout the discussions of specific neural
nets, unless indicated otherwise for a particular net (appropriate values for the
parameter depend on the particular neural net model being used and will be dis-
cussed further for each model):

Xis Yj

Wi;

y-in;

Activations of units X;, Y;, respectively:
For input units X;;

x; = input signal;
for other units Y;
yi = f(y-iny).

Weight on connection from unit X; to unit Y;:
Beware: -Some authors use the opposite convention, with w;; de-
noting the weight from unit Y; to unit X;.

Bias on unit ¥;:
A bias acts like a weight on a connection from a unit with a constant
activation of 1 (see Figure 1.11).

Net input to unit ¥;:

y_inj = bj + Exiw,-j
. i

Weight matrix:
W = {w;}.
Vector of weights:
w,; = (lea Wajs e o vy an)T-

This is the jth column of the weight matrix.
Norm or magnitude of vector x.
Threshold for activation of neuron Y;:
A step activation function sets the activation of a neuron to 1 when-
ever its net input is greater than the specified threshold value 6;;
otherwise its activation is 0 (see Figure 1.8).
Training input vector:
S = (81,3 8is .y Sa)
Training (or target) output vector:
t=(t1,...,tj,...,tm).
Input vector (for the net to classify or respond to):

X = (X1, v Xiyenoy,Xn)



Sec. 1.4  How Are Neurél Networks Used? 21

Aw;; Change in w;;: .
Awy = [wi; (new) — wy; (old)]. -

a Learning rate:

The learning rate is used to control the amount of weight adjust-
ment at each step of training:-

Matrix multiplication method for calciﬂating net input -

If the connection weights for a neural net are stored in a matrix W = (w; ;). the
net input to unit ¥; (with no bias on unit j) is simply the dot product of the vectors
X = (X1,...,Xi...,X,) and w; (the jth column of the weight matrix):

y_in; = x-w,

n
= 2 XiW;j; .
i=1

Bias ‘
A bias can be included by adding a component’)xo = 1 to the vector x, i.e.,
x = (L, xy,...,x,...,x,). The bias is treated exactly like any other weight,

i.e., wo; = b;. The net input to unit ¥; is given by
‘ y-in; = X'w,

n
2 XiW,j

i=0 B PO

n

woj + X Xiwy

i=1

.
bj + 2 xiwi; ..
i=1

The relation between a bias and a threshold is considere'djn‘Section 2.1.2.

Figure 1.11 Neuron with a bias.
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1.5 WHO IS DEVELOPING NEURAL NETWORKS?

This section presents a very brief summary of the history of neural networks, in
terms of the development of architectures and algorithms that are widely used
today. Results of a primarily biological nature are not included, due to space
constraints. They have, however, served as the inspiration for a number of net-
works that are applicable to problems beyond the original ones studied. The his-
tory of neural networks shows the interplay among biological experimentation,
modeling, and computer simulation/hardware implementation. Thus, the field is
strongly interdisciplinary.

1.5.1 The 1940s: The Beginning of Neural Nets

McCulloch-Pitts neurons

Warren McCulloch and Walter Pitts designed what are generally regarded as the
first neural networks [McCulloch & Pitts, 1943]. These researchers recognized
that combining many simple neurons into neural systems was the source of in-
creased computational power. The weights on a McCulloch-Pitts neuron are set
so that the neuron performs a particular simple logic function, with different neu-
rons performing different functions. The neurons can be arranged into a net to
produce any output that can be represented as a combination of logic functions.
The flow of information through the net assumes a unit time step for a signal to
travel from one neuron to the next. This time delay allows the net to model some
physiological processes, such as the perception of hot and cold.

The idea of a threshold such that if the net input to a neuron is greater than
the threshold then the unit fires is one feature of a McCulloch-Pitts neuron that
is used in many artificial neurons today. However, McCulloch-Pitts neurons are
used most widely as logic circuits [Anderson & Rosenfeld, 1988].

McCulloch and Pitts subsequent work [Pitts & McCulloch, 1947] addressed
issues that are still important research areas today, such as translation and rotation
invariant pattern recognition.

Hebb learning

Donald Hebb, a psychologist at McGill University, designed the first learning law
for artificial neural networks [Hebb, 1949]. His premise was that if two neurons
were active simultaneously, then the strength of the connection between them
should be increased. Refinements were subsequently made to this rather general
statement to allow computer simulations [Rochester, Holland, Haibt & Duda,
1956]. The idea is closely related to the correlation matrix learning developed by
Kohonen (1972) and Anderson (1972) among others. An expanded form of Hebb
learning [McClelland & Rumelhart, 1988] in which units that are simultaneously
off also reinforce the weight on the connection between them will be presented
in Chapters 2 and 3. '
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1.5.2 The 1950s and 1960s: The First Golden Age
- of Neural Networks

Although today neural networks are often viewed as an alternative to (or com-
plement of) traditional computing, it is interesting to note that John von Neumann,
the ““father of modern computing,”” was keenly interested in modeling the brain
[von Neumann, 1958]. Johnson and Brown (1988) and Anderson and Rosenfeld
(1988) discuss the interaction between von Neumann and early neural network
researchers such as Warren McCulloch, and present further indication of von
Neumann’s views of the directions in which computers would develop.

Perceptrons

Together with several other researchers [Block, 1962; Minsky & Papert, 1988
(originally published 1969)], Frank Rosenblatt (1958, 1959, 1962) introduced and
developed a large class of artificial neural networks called perceptrons. The most
typical perceptron consisted of an input layer (the retina) connected by paths with
fixed weights to associator neurons; the weights on the connection paths were
adjustable. The perceptron learning rule uses an iterative weight adjustment that
is more powerful than the Hebb rule. Perceptron learning can be proved to con-
verge to the correct weights if there are weights that will solve the problem at
hand (i.e., allow the net to reproduce correctly all of the training input and target
output pairs). Rosenblatt’s 1962 work describes many types of perceptrons. Like
the neurons developed by McCulloch and Pitts and by Hebb, perceptrons use a
threshold output function. '

The early successes with perceptrons led to enthusiastic claims. However,
the mathematical proof of the convergence of iterative learning under suitable
assumptions was followed by a demonstration of the limitations regarding what
the perceptron type of net can learn [Minsky & Papert, 1969].

ADALINE

Bernard Widrow and his student, Marcian (Ted) Hoff [Widrow & Hoff, 1960],
developed a learning rule (which usually either bears their names, or is designated
the least mean squares or delta rule) that is closely related to the perceptron
learning rule. The perceptron rule adjusts the connection weights to a unit when-
ever the response of the unit is incorrect. (The response indicates a classification
of the input pattern.) The delta rule adjusts the weights to reduce the difference
between the net input to the output unit and the desired output. This results in
the smallest mean squared error. The similarity of models developed in psychology
by Rosenblatt to those developed in electrical engineering by Widrow and Hoff
is evidence of the interdisciplinary nature of neural networks. The difference in
learning rules, although slight, leads to an improved ability of the net to genéralize
(i.e., respond to input that is similar, but not identical, to that on which it was
trained). The Widrow-Hoff learning rule for a single-layer network is a precursor
of the backpropagation rule for multilayer nets.
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Work by Widrow and his students is sometimes reported as neural network
research, sometimes as adaptive linear systems. The name ADALINE, interpreted
as either Apaptive Linear NEuron or Apaptive LINEar system, is often given to
these nets. There have been many interesting applications of ADALINEs, from
neural networks for adaptive antenna systems [Widrow, Mantey, Griffiths, &
Goode, 1967] to rotation-invariant pattern recognition to a variety of control prob-
lems, such as broom balancing and backing up a truck [Widrow, 1987; Tolat &
Widrow, 1988; Nguyen & Widrow, 1989]. MaDALINEs are multilayer extensions'
of ApALINEs [Widrow & Hoff, 1960; Widrow & Lehr, 1990].

1.5.3 The 1970s: The Quiet Years

In spite of Minsky and Papert’s demonstration of the limitations of perceptrons
(i.e., single-layer nets), research on neural networks continued. Many of the cur-
rent leaders in the field began to publish their work during the 1970s. (Widrow,
of course, had started somewhat earlier and is still active.)

Kohonen

The early work of Teuvo Kohonen (1972), of Helsinki University of Technology,
dealt with associative memory neural nets. His more recent work [Kohonen, 1982]
has been the development of self-organizing feature maps that use a topological
structure for the cluster units. These nets have been applied to speech recognition
(for Finnish and Japanese words) [Kohonen, Torkkola, Shozakai, Kangas, &
Venta, 1987; Kohonen, 1988], the solution of the ‘‘Traveling Salesman Problem’’

[Angeniol, Vaubois, & Le Texier, 1988], and musical composition [Kohonen,
1989b]. : ’

Anderson

James Anderson, of Brown University, also started his research in neural net-
works with associative memory nets [Anderson, 1968, 1972]. He developed these
ideas into his ‘‘Brain-State-in-a-Box’’ [Anderson, Silverstein, Ritz, & Jones,
1977], which truncates the linear output of earlier models to prevent the output
from becoming too large as the net iterates to find a stable solution (or memory).
Among the areas of application for these nets are medical diagnosis and learning
multiplication tables. Anderson and Rosenfeld (1988) and Anderson, Pellionisz,
and Rosenfeld (1990) are collections of fundamental papers on neural network
research. The introductions to each are especially useful.

Grossberg

Stephen Grossberg, together with his many colleagues and coauthors, has had an
extremely prolific and productive career. Klimasauskas (1989) lists 146 publica-
tions by Grossberg from 1967 to 1988. His work, which is very mathematical and
very biological, is widely known [Grossberg, 1976, 1980, 1982, 1987, 1988]. Gross-
berg is director of the Center for Adaptive Systems at Boston University.
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Carpenter

Together with Stephen Grossberg, Gail Carpenter has developed a theory of self-
organizing neural networks called adaptive resonance theory [Carpenter & Gross-
berg, 1985, 1987a, 1987b, 1990]. Adaptive resonance theory nets for binary input
patterns (ART1) and for continuously valued inputs (ART?2) will be examined in
Chapter 5.

1.5.4 The 1980s: Renewed Enthusiasm

Backpropagation

Two of the reasons for the ‘‘quiet years’’ of the 1970s were the failure of single-
layer perceptrons to be able to solve such simple problems (mappings) as the Xor
function and the lack of a general method of training a multilayer net. A method
for propagating information about errors at the output units back to the hidden
units had been discovered in the previous decade [Werbos, 1974], but had not
gained wide publicity. This method was also discovered independently by David
Parker (1985) and by LeCun (1986) before it became widely known. It is very
similar to yet an earlier algorithm in optimal control theory [Bryson & Ho, 1969].
Parker’s work came to the attention of the Parallel Distributed Processing Group
led by psychologists David Rumelhart, of the University of California at San
Diego, and James McClelland, of Carnegie-Mellon University, who refined and
publicized it [Rumelhart, Hinton, & Williams, 1986a, 1986b; McClelland &
Rumelhart, 1988].

Hopfield nets

Another key player in the increased visibility of and respect for neural nets
is prominent physicist John Hopfield, of the California Institute of Tech-
nology. Together with David Tank, a researcher at AT&T, Hopfield has developed
a number of neural networks based on fixed weights and adaptive activations
[Hopfield, 1982, 1984; Hopfield & Tank, 1985, 1986; Tank & Hopfield, 1987].
These nets can serve as associative memory nets and can be used to solve con-
straint satisfaction problems such as the ‘‘Traveling Salesman Problem.’’ An ar-
ticle in Scientific American [Tank & Hopfield, 1987] helped to draw popular at-
tention to neural nets, as did the message of a Nobel prize-winning physicist that,
in order to make machines that can do what humans do, we need to study human
cognition.

Neocognitron

Kunihiko Fukushima and his colleagues at NHK Laboratories in Tokyo have
developed a series of specialized neural nets for character recognition. One ex-
ample of such a net, called a neocognitron, is described in Chapter 7. An earlier
self-organizing network, called the cognitron [Fukushima, 1975], failed to rec-
ognize position- or rotation-distorted characters. This deficiency was corrected
in the neocognitron [Fukushima, 1988; Fukushima, Miyake, & Ito, 1983].
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Boltzmann machine

A number of researchers have been involved in the development of nondeter-
ministic neural nets, that is, nets in which weights or activations are changed on
the basis of a probability density function [Kirkpatrick, Gelatt, & Vecchi, 1983;
Geman & Geman, 1984; Ackley, Hinton, & Sejnowski, 1985; Szu & Hartley,
1987]. These nets incorporate such classical ideas as simulated annealing and
Bayesian decision theory.

Hardware implementation

Another reason for renewed interest in neural networks (in addition to solving
the problem of how to train a multilayer net) is improved computational capa-
bilities. Optical neural nets [Farhat, Psaltis, Prata, & Paek, 1985] and VLSI im-
plementations [Sivilatti, Mahowald, & Mead, 1987] are being developed.

Carver Mead, of California Institute of Technology, who also studies motion
detection, is the coinventor of software to design microchips. He is also cofounder
of Synaptics, Inc., a leader in the study of neural circuitry.

Nobel laureate Leon Cooper, of Brown University, introduced one of the
first multilayer nets, the reduced coulomb energy network. Cooper is chairman
of Nestor, the first public neural network company [Johnson & Brown, 1988},
and the holder of several patents for information-processing systems [Klima-
sauskas, 1989]. )

Robert Hecht-Nielsen and Todd Gutschow developed several digital neu-
rocomputers at TRW, Inc., during 1983-85. Funding was provided by the Defense
Advanced Research Projects Agency (DARPA) [Hecht-Nielsen, 1990]. DARPA
(1988) is a valuable summary of the state of the art in artificial neural networks
(especially with regard to successful applications). To quote from the preface to
his book, Neurocomputing, Hecht-Nielsen is ‘‘an industrialist, an adjunct aca-
demic, and a philanthropist without financial portfolio>’ [Hecht-Nielsen, 1990].
The founder of HNC, Inc., he is also a professor at the University of California,
San Diego, and the developer of the counterpropagation network.

1.6 WHEN NEURAL NETS BEGAN: THE McCULLOCH-PITTS
NEURON

The McCulloch-Pitts neuron is perhaps the earliest artificial neuron [McCulloch
& Pitts, 1943]. It displays several important features found in many neural net-

works. The requirements for McCulloch-Pitts neurons may be summarized as
follows:

1. The activation of a McCulloch-Pitts neuron is binary. That is, at any time
step, the neuron either fires (has an activation of 1) or does not fire (has an
activation of 0).

2. McCulloch-Pitts neurons are connected by directed, weighted paths.
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3. A connection path is excitatory if the weight on the path is positive; other-
wise it is inhibitory. All excitatory connections into a particular neuron have
the same weights.

4. Each neuron has a fixed threshold such that if the net input to the neuron
is greater than the threshold, the neuron fires.

5. The threshold is set so that inhibition is absolute. That is, any nonzero
inhibitory input will prevent the neuron from firing.

6. It takes one time step for a signal to pass over ofie connection link.

The simple example of a McCulloch-Pitts neuron shown in Figure 1.12 il-
lustrates several of these requirements. The connection from X, to Y is excitatory,
as is the connection from X, to Y. These excitatory connections have the same
(positive) weight because they are going into the same unit.

The threshold for unit Y is 4; for the values of the excitatory and inhibitory
weights shown, this is the only integer value of the threshold that will allow Y to
fire sometimes, but will prevent it from firing if it receives a nonzero signal over
the inhibitory connection.

It takes one time step for the signals to pass from the X units to Y; the
activation of Y at time 7 is determined by the activations of X, X>, and X; at the
previous time, t — 1. The use of discrete time steps enables a network of
McCulloch-Pitts neurons to. model physiological phenomena in which there is a
time delay; such an example is given in Section 1.6.3.

1.6.1 Architecture

In general, a McCulloch-Pitts neuron Y may receive signals from any number of
other neurons. Each connection path is either excitatory, with weight w > 0, or
inhibitory, with weight —p (p > 0). For convenience, in Figure 1.13, we assume
there are n units, X, . . ., X,,, which send excitatory signals to unit ¥, and m

units, X, 41, . . . , Xn+m, Which send inhibitory signals. The activation function
for unit Y is

.. )1 ify_in=6
f(y"")‘{o if y_in <

2

(D——
@_/

~1
Figure 1.12 A simple McCulloch-Pitts
neuron Y.
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Xn
: -p
@_/ Figure 1.13  Architecture of a

.McCulloch-Pitts neuron Y.

where y_in is the total input signal received and 6 is the threshold. The condition
that inhibition is absolute requires that  for the activation function satisfy the
inequality

0> nw — p. (
Y will fire if it receives k or more excitatory inputs and no inhibitory inputs, where
kw=0>(k — Dw.

: Although all excitatory weights coming into any particular unit must be the
same, the weights coming into one unit, say, Y1, do not have to be the same as
the weights coming into another unit, say Y-.

1.6.2 Algorithm

The weights for a McCulloch-Pitts neuron are set, together with the threshold for
the neuron’s activation function, so that the neuron will perform a simple logic
function. Since analysis, rather than a training algorithm, is used to determine
the values of the weights and threshold, several examples of simple McCulloch-
Pitts neurons are presented in this section. Using these simple neurons as building
blocks, we can model any function or phenomenon that can be represented as a
logic function. In Section 1.6.3, an example is given of how several of these simple
neurons can be combined to model an interesting physiological phenomenon.

Simple networks of McCulloch-Pitts neurons, each with a threshold of 2,
are shown in Figures 1.14-1.17. The activation of unit X; at time ¢ is denoted
xi(t). The activation of a neuron X; at time ¢ is determined by the activations, at
time t — 1, of the neurons from which it receives signals.

Logic functions will be used as simple examples for a number of neural nets.
The binary form of the functions for AND, OR, and AND Nor are defined here for
reference. Each of these functions acts on two input values, denoted x; and x»,
and produces a single output value y.
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AND

The AND function gives the response ‘‘true’’ if both input values are ‘‘true’’;
otherwise the response is ‘‘false.”” If we represent ‘‘true’’ by the value 1, and
‘““false’’ by 0, this gives the following four training input, target output pairs:

X1 X2 -

y
I 1 1
1 0 0
0 1 0
0 0 0

Example 1.1 A McCulloch-Pitts Neuron for the ANp Function

The network in Figure 1.14 performs the mapping of the logical Anp function. The
threshold on unit Y is 2.

Or

The Or function gives the response ‘‘true’’ if either of the input values is ‘‘true’’;
otherwise the response is ‘‘false.”’ This is the ‘‘inclusive or,”’ since both input
values may be ‘‘true’’ and the response is still ‘“‘true.”’ Representing ‘‘true’’ as
1, and ‘‘false’’ as 0, we have the following four training input, target output pairs:

Xy Xz —> Y
1 1 1
1 0 1
0 1 1
0 0 0

Example 1.2 A McCulloch-Pitts Neuron for the Or Function

The network in Figure 1.15 performs the logical Or function. The threshold on unit
Yis2. .

1 2

Figure 1.14 A McCulloch-Pitts neuron to Figure 1.15 A McCulloch-Pitts neuron to
perform the logical AND function. perform the logical Or function.
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AnD Not

The AND Nor function is an example of a logic function that is not symmetric in
its treatment of the two input values. The response is ‘‘true’” if the first input
value, x;, is “‘true’’ and the second input value, x», is ‘‘false’’; otherwise the
response is ‘‘false.”’ Using a binary representation of the logical input and re-
sponse values, the four training input, target output pairs are:

Xy X2 —> Y
1 1 0
1 0 1
0 1 0
0 0 0

Example 1.3 A McCulloch-Pitts Neuron for the Ano Not Function

The net in Figure 1.16 performs the function x; ANp Nort x». In other words, neuron
Y fires at time ¢ if and only if unit X, fires at time + — 1 and unit X, does not fire
at time ¢+ — 1. The threshold for unit Y is 2.

1.6.3 Applications

Xor

The Xor (exclusive or) function gigles the response ‘‘true”’ if exactly one of the
input values is ‘“‘true’’; otherwise the response is ‘‘false.”” Using a binary rep-
resentation, the four training input, target output pairs are:

X1 X2 — Yy
1 1 0
1 0 1
0 1 1
0 0 0

Example 1.4 A McCulloch-Pitts Net for the Xor Function

The network in Figure 1.17 performs the logical Xor function. Xor can be expressed
as

x1 XOR x3 < (x, A‘ND Nor x3) Or (x; AND Nor x1).

Figure 1.16 A McCulloch-Pitts neuron
-1 to perform the logical AND NoT
function.
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Figure 1.17 A McCulloch-Pitts neural
net to perform the logical Xor
- function.

Thus, y = x; Xor x, is found by a two-layer net. The first layer forms
Z1 = x1 AND Nor x>
and |
Z2 = x; AND Nor x;,.
The second layer consists of
y = 21 OR z».
Units Z,;, Z,, and Y each have a threshold of 2.

Hot and cold
Example 1.5 Modeling the Perception of Hot and Cold with a McCulloch-Pitts Net

It is a well-known and interesting physiological phenomenon that if a cold stimulus
is applied to a person’s skin for a very short period of time, the person will perceive
heat. However, if the same stimulus is applied for a longer period, the person will
perceive cold. The use of discrete time steps enables the network of McCulloch-
Pitts neurons shown in Figure 1.18 to model this phenomenon. The example is an
elaboration of one originally presented by McCulloch and Pitts [1943]. The model
is designed to give only the first perception of heat or cold that is received by the
perceptor units. :

In the figure, neurons X; and X, represent receptors for heat and cold,
respectively, and neurons Y, and Y are the counterpart perceptors. Neurons Z;

Figure 1.18 A network of McCulloch-
Pitts neurons to model the perception
of heat and cold.
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and Z; are auxiliary units needed for the problem. Each neuron has a threshold
of 2, i.e., it fires (sets its activation to 1) if the net input it receives is =2. Input
to the system will be (1,0) if heat is applied and (0,1) if cold is applied. The desired
response of the system is that cold is perceived if a cold stimulus is applied for
two time steps, i.e.,

y2(t) = x2(t — 2) AND x2(t — 1).

The activation of unit Y, at time ¢ is y,(7); y»(¢) = 1 if cold is perceived, and
y2(t) = 0 if cold is not perceived.

In order to model the physical phenomenon described, it is also required
that heat be perceived if either a hot stimulus is applied or a cold stimulus is

applied briefly (for one time step) and then removed. This condition is expressed
as

yi(#) = {xi(t — 1)} Or {x2(z — 3) AND NoT x,(t — 2)}.

To see that the net shown in Figure 1.18 does in fact represent the two
logical statements required, consider first the neurons that determine the response
of Y, at time ¢ (illustrated in Figure 1.19). The figure shows that

yi(8) = x1(t = 1) OrR z,(¢t — 1).

Now consider the neurons (illustrated in Figure 1.20) that determine the
response of unit Z, at time ¢+ — 1. This figure shows that

zi(t — 1) = z2(t — 2) AND Nort x2(¢ — 2).

Finally, the response of unit Z at time ¢+ — 2 is simply the value of X at
the previous time step:

22(t — 2) = xa2(t — 3).
Substituting in the preceding expression for y,(¢) gives
yi(t) = {xi(t — 1)} Or {x2(z — 3) AND Nort x,(t — 2)}.

 The analysis for the respbnse of neuron Y at time f proceeds in a similar
manner. Figure 1.21 shows that y;(f) = z2(t — 1) AND x(z — 1). However, as

] ~1
. 2 !
2
Figure 1.19 The neurons that determine the response Figure 1.20 The neurons that

of unit Y;. determine the response of unit Z,.
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before, z.(t — 1) = x,(¢t — 2); substituting in the expression for y,(¢) then gives
y2(8) = x2(r — 2) AND x2(2 — 1),

as required. )

It is also informative to trace the flow of activations through the net, starting
with the presentation of a stimulus at # = 0. Case 1, a cold stimulus applied for
one time step and then removed, is illustrated in Figure 1.22. Case 2, a cold
stimulus applied for two time steps, is illustrated in Figure 1.23, and case 3, a hot
stimulus applied for one time step, is illustrated in Figure 1.24. In each case, only
the activations that are known at a particular time step are indicated. The weights
on the connections are as .in Figure 1.18.

Case 1: A cold stimulus applied for one time step.

The activations that are known at + = 0 are shown in Figure 1.22(a).

The activations that are known at t+ = | are shown in Figure 1.22(b). The
activations of the input units are both 0, signifying that the cold stimulus presented
at r = 0 was removed after one time step. The activations of Z, and Z, are based
on the activations of X; att = 0.

The activations that are known at t = 2 are shown in Figure 1.22(c). Note
that the activations of the input units are not specified, since their value at
t = 2 does not determine the first response of the net to the situation being
modeled. Although the responses of the perceptor units are determined, no per-
ception of hot or cold has reached them yet.

The activations that are known at + = 3 are shown in Figure 1.22(d). A
perception of heat is indicated by the fact that unit Y, has an activation of 1 and
unit Y» has an activation of 0.

Case 2: A cold stimulus applied for two time steps.

The activations that are known at ¢t = 0 are shown in Figure 1.23(a), and
those that are known at ¢ = 1 are shown in Figure 1.23(b).

The activations that are known at ¢t = 2 are shown in Figure 1.23(c). Note
that the activations of the input units are not specified, since the first response
of the net to the cold stimulus being applied for two time steps is not influenced
by whether or not the stimulus is removed after the two steps. Although the
responses of the auxiliary units Z, and Z, are indicated, the responses of the
perceptor units are determined by the activations of all of the units at ¢ = 1.
Case 3: A hot stimulus applied for one time step.

The activations that are known at ¢+ = 0 are shown in Figure 1.24(a).

The activations that are known at ¢ = 1 are shown in Figure 1.24(b). Unit
Y, fires because it has received a signal from X;. Y> does not fire because it
requires input signals from both X, and Z, in order to fire, and X had an activation
of datt = 0.

‘ : ’— 1
@\/ ﬁ Figure 1.21 The neurons that
: 1 determine the response of unit Y.
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Figure 1.22 A cold stimulus applied
for one time step.

Activations at @)1 = 0, (b))t =1, (c) ¢
=2,and (d)r = 3.
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Figure 1.23 A cold stimulus applied
for two time steps.

Activations at (a) t = 0, (b) ¢ = 1, and
©t=2.

1.7 SUGGESTIONS FOR FURTHER STUDY

!

1.7.1 Readings

Many of the applications and historical developments we have summarized in this
chapter are described in more detail in two collections of original research:

J Neurocomputing: Foundations of Research [Anderson & Rosenfeld, 1988].

~® Neurocomputing 2: Directions for Research [Anderson, Pellionisz &
Rosenfeld, 1990].
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Figure 1.24 A hot stimulus applied for
one time step.
Activations at (a) t = 0Oand (b) ¢ = 1.

These contain useful papers, along with concise and insightful introductions
explaining the significance and key results of each paper.
' The DARPA Neural Network Study (1988) also provides descriptions of both
the theoretical and practical state of the art of neural networks that year.

Nontechnical introductions

Two very readable nontechnical introductions to neural networks, with an em-
phasis on the historical development and the personalities of the leaders in the
field, are:

® Cognizers [Johnson & Brown, 1988].

® Apprentices of Wonder: Inside the Neural Network Revolution [Allman,
1989]. )

Applications
Among the books dealing with neural networks for particular types of applications
are: '

® Neural Networks for Signal Processing [Kosko, 1992b].
® Neural Networks for Control [Miller, Sutton, & Werbos, 1990].
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o Simulated Annealing and Boltzmann Machines [Aarts & Korst, 1989).
® Adaptive Pattern Recognition and Neural Networks [Pao, 1989].
® Adaptive Signal Processing [Widrow & Sterns, 19835].

History

The history of neural networks is a combination of progress in experimental work
with biological neural systems, computer modeling of biological neural systems,
the development of mathematical models and their applications to problems in a
wide variety of fields, and hardware implementation of these models. In addition
to the collections of original papers already mentioned, in which the introductions
to each paper provide historical perspectives, Embodiments of Mind [McCulloch,
1988] is a wonderful selection of some of McCulloch’s essays. Perceptrons [Min-
sky & Papert, 1988] also places the development of neural networks into historical
context.

Biological neural networks

Introduction to Neural and Cognitive Modeling [Levine, 1991] provides extensive
information on the history of neural networks from a mathematical and psycho-
logical perspective. For additional writings from a biological point of view, see
Neuroscience and Connectionist Theory [Gluck & Rumelhart, 1990] and Neural
and Brain Modeling {MacGregor, 1987].

1.7.2 Exercises

1.1 Consider the neural network of McCulloch-Pitts neurons shown in Figure 1.25. Each
neuron (other than the input neurons, N, and N,) has a threshold of 2.

a. Define the response of neuron N at time 7 in terms of the activations of the input
neurons, N and N, at the appropriate time.

b. Show the activation of each neuron that results from an input signal of Ny = 1,
N, =0at:=0.

1.2 There are at least two ways to express XOR in terms of other simple logic functions
that can be represented by McCulloch-Pitts neurons. One such example is presented
in Section 1.6. Find another representation and the net for it. How do the two nets
(yours and the one in Section 1.6)c0mpare?

»{ N, Figure 1.25 Neural network for
Exercise 1.1.
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1.3 Inthe McCulloch-Pitts model of the perception of heat and cold, a cold stimulus applied
at times r — 2 and ¢ — 1 is perceived as cold at time ¢. Can you modify the net to
require the cold stimulus to be applied for three time steps before cold is felt?

1.4 In the hot and cold model, consider what is felt after the first perception. (That is, if
the first perception of hot or cold is at time ¢, what is felt at time ¢ + 1?) State clearly
any further assumptions as to what happens to the inputs (stimuli) that may be nec-
essary or relevant.

1.5 Design a McCulloch-Pitts net to model the perception of simple musical patterns. Use
three input units to correspond to the three pitches, ‘‘do,”” ‘‘re,”” and ‘‘mi.”” Assume
that only one pitch is presented at any time. Use two output units to correspond to
the perception of an ‘‘upscale segment’ and a ‘‘downscale segment”’ —specifically,
a. the pattern of inputs ‘‘do’” at time ¢z = 1, *‘re”’ at t = 2, and “‘mi’’ at + = 3 should

elicit a positive response from the ‘‘upscale segment’’ unit;
b. the pattern of inputs ‘““mi’” at time ¢t = 1, *‘re’” at t = 2, and ‘“do”” at ¢+ = 3 should
elicit a positive response from the ‘‘downscale segment’’ unit;
c. any other pattern of inputs should generate no response.
You may wish to elaborate on this example, allowing for more than one input unit to
be ‘‘on’’ at any instant of time, designing output units to detect chords, etc.




CHAPTER 2

Simple Neural Nets
for Pattern Classification

2.1 GENERAL DISCUSSION

One of the simplest tasks that neural nets can be trained to perform is pattern
classification. In pattern classification problems, each input vector (pattern) be-
longs, or does not belong, to a particular class or category. For a neural net
approach, we assume we have a set of training patterns for which the correct
classification is known. In the simplest case, we consider the question of mem-
bership in a single class. The output unit represents membership in the class with
aresponse of 1; a response of — 1 (or 0 if binary representation is used) indicates
that the pattern is not a member of the class. For the single-layer nets described
in this chapter, extension to the more general case in which each pattern may or
may not belong to any of several classes is immediate. In such case, there is an
output unit for each class. Pattern classification is one type of pattern recognition;
the associative recall of patterns (discussed in Chapter 3) is another.

Pattern classification problems arise in many areas. In 1963, Donald Specht
(a student of Widrow) used neural networks to detect heart abnormalities with
EKG types of data as input (46 measurements). The output was ‘“‘normal’’ or
‘‘abnormal,”” with an ‘‘on”’ response signifying normal [Specht, 1967; Caudill &
Butler, 1990]. In the early 1960s, Minsky and Papert used neural nets to classify
input patterns as convex or not convex and connected or not connected [Minsky
& Papert, 1988]. There are many other examples of pattern classification problems

39
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being solved by neural networks, both the simple nets described in this chapter,
other early nets not discussed here, and multilayer nets (especially the backprop-
agation nets described in Chapter 6).

In this chapter, we shall discuss three methods of training a simple single-
layer neural net for pattern classification: the Hebb rule, the perceptron learning
rule, and the delta rule (used by Widrow in his ADALINE neural net). First, how-
ever, we discuss some issues that are common to all single-layer nets that perform
pattern classification. We conclude the chapter with some comparisons of the
nets discussed and an extension to a multilayer net, MADALINE.

Many real-world examples need more sophisticated architecture and training
rules because the conditions for a single-layer net to be adequate (see Section
2.1.3) are not met. However, if the conditions are met approximately, the results
may be sufficiently accurate. Also, insight can be gained from the more simple
nets, since the meaning of the weights may be easier to interpret.

2.1.1 Architecture

The basic architecture of the simplest possible neural networks that perform pat-
tern classification consists of a layer of input units (as many units as the patterns
to be classified have components) and a single output unit. Most neural nets we
shall consider in this chapter use the single-layer architecture shown in Figure
2.1. This allows classification of vectors, which are n-tuples, but considers mem-
bership in only one category.

Input Output Figure 2.1 Single-layer net for pattern
Units _ Unit  classification.

An example of a net that classifies the input into several categories is con-
sidered in Section 2.3.3. This net is a simple extension of the nets that perform
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a single classification. The MADALINE net considered in Section 2.4.5 is a mul-
tilayer extension of the single-layer ADALINE net.

2.1.2 Biases and Thresholds

A bias acts exactly as a weight on a connection from a unit whose activation is
always 1. Increasing the bias increases the net input to the unit. If a bias is
included, the activation function is typically taken to be

_ 1 if net = 0;
floet) = {—1 if net < 0;

where

net = b + 2 XiW;.
i

Some authors do not use a bias weight, but instead use a fixed threshold 6
for the activation function. In that case,

_ 1 if net = 0;
f(net) = {—1 if net < 6;

where

net = 2 XiW;.
i

However, as the next example will demonstrate, this is essentially equivalent to
the use of an adjustable bias. '

Example 2.1 The role of a bias or a threshold

In this example and in the next section, we consider the separation of the input space
into regions where the response of the net is positive and regions where the response
is negative. To facilitate a graphical display of the relationships, we illustrate the
ideas for an input with two components while the output is a scalar (i.e., it has only
one component). The architecture of these examples is given in Figure 2.2.

Input Output Figure 2.2 Single-layer neural network
Units Unit for logic functions.
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The boundary between the values of x, and x, for which the net gives a positive
response and the values for which it gives a negative response is the separating line
b + xywy + XaW, = 0,

or (assuming that w, # 0),

X2

i}
|
|
=
|
|

The requirement for a positive response from the output unit is that the net input it
receives, namely, b + x;w; + x,w,, be greater than 0. During training, values of
wy, w,, and b are determined so that the net will have the correct response for the
training data.

If one thinks in terms of a threshold, the requirement for a positive response
from the output unit is that the net input it receives, namely, x,w, + x.w,, be greater
than the threshold. This gives the equation of the line separating positive from neg-
ative output as

X(wy + xwy = 0,
or (assuming that w, # 0),

wi 9
x2=———x1+—.
w2 w2

During training, values of w, and w, are determined so that the net will have
the correct response for the training data. In this case, the separating line cannot
pass through the origin, but a line can be found that passes arbitrarily close to the
origin. i

The form of the separating line found by using an adjustable bias and the form
obtained by using a fixed threshold illustrate that there is no advantage to including
both a bias and a nonzero threshold for a neuron that uses the step function as its
activation function. On the other hand, including neither a bias nor a threshold is
equivalent to requiring the separating line (or plane or hyperplane for inputs with
“more components) to pass through the origin. This may or may not be appropriate
for a particular problem.

As an illustration of a pseudopsychological analogy to the use of a bias,
consider a simple (artificial) neural net in which the activation of the neuron
corresponds to a person’s action, ‘‘Go to the ball game.”’ Each input signal cor-
responds to some factor influencing the decision to “‘go’’ or ‘‘not go’’ (other
possible activities, the weather conditions, information about who is pitching,
etc.). The weights on these input signals correspond to the importance the person
places on each factor. (Of course, the weights may change with time, but methods
for modifying them are not considered in this illustration.) A bias could represent
a general inclination to *‘go’’ or ‘‘not go,”’ based on past experiences. Thus, the
bias would be modifiable, but the signal to it would not correspond to information
about the specific game in question or activities competing for the person’s time.
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The threshold for this ‘‘decision neuron’’ indicates the total net input nec-
essary to cause the person to ‘‘go,” i.e., for the decision neuron to fire. The
threshold would be different for different people; however, for the sake of this
simple example, it should be thought of as a quantity that remains fixed for each
individual. Since it is the relative values of the weights, rather than their actual
magnitudes, that determine the response of the neuron, the model can cover all
possibilities using either the fixed threshold or the adjustable bias.

2.1.3 Linear Separability

For each of the nets in this chapter, the intent is to train the net (i.e., adaptively
determine its weights) so that it will respond with the desired classification when
presented with an input pattern that it was trained on or when presented with one
that is sufficiently similar to one of the training patterns. Before discussing the
particular nets (which is to say, the particular styles of training), it is useful to
discuss some issues common to all of the nets. For a particular output unit, the
desired response is a ‘‘yes’’ if the input pattern is a member of its class and a
“no’ if it is not. A ‘“‘yes’” response is represented by an output signal of 1, a
"“no’’ by an output signal of —1 (for bipolar signals). Since we want one of two
responses, the activation (or transfer or output) function is taken to be a step
function. The value of the function is 1 if the net input is positive and —1 if the
net input is negative. Since the net input to the output unit is

y.in =b + inw,v,
i

it is easy to see that the boundary between the region where y_in > 0 and the
region where y_in < 0, which we call the decision boundary, is determined by
the relation ! ") M

b+ Zxwi =0 | hy+hw ~O

! — A =-9
Depending on the number of input units in the network, this equation represents
a line, a plane, or a hyperplane.

If there are weights (and a bias) so that all of the training input vectors for
which the correct response is +1 lie on one side of the decision boundary and
all of the training input vectors for which the correct response is — 1 lie on the
other side of the decision boundary, we say that the problem is “‘linearly sepa-
rable.”” Minsky and Papert [1988] showed that a single-layer net can learn only
linearly separable problems. Furthermore, it is easy to extend this result to show
that multilayer nets with linear activation functions are no more powerful than
single-layer nets (since the composition of linear functions is linear).

It is convenient, if the input vectors are ordered pairs (or at most ordered
triples), to graph the input training vectors and indicate the desired response by
the appropriate symbol (‘‘+* or **~). The analysis also extends easily to nets
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with more input units; however, the graphical display is not as convenient. The
region where y is positive is separated from the region where it is negative by the
line

These two regions are often called decision regions for the net. Notice in the
following examples that there are many different lines that will serve to separate
the input points that have different target values. However, for any particular
line, there are also many choices of w, w,, and b that give exactly the same line.
The choice of the sign for b determines which side of the separating line corre-
sponds to a + 1 response and which side to a — 1 response.

There are four different bipolar input patterns we can use to train a net with
two input units. However, there are two possible responses for each input pattern,
so there are 2* different functions that we might be able to train a very simple
net to perform. Several of these functions are familiar from elementary logic, and
we will use them for illustrations, for convenience. The first question we consider
is, For this very simple net, do weights exist so that the net will have the desired
output for each of the training input vectors?

Example 2.2 Response regions for the Anp function

The Anp function (for bipolar inputs and target) is defined as follows:

INPUT (x5, X2)  OUTPUT (f)

a,n +1
(a, -1 -1
(-1, D -1
(-1, -1 -1

The desired responses can be illustrated as shown in Figure 2.3. One possible de-
cision boundary for this function is shown in Figure 2.4.

An example of weights that would give the decision boundary illustrated in
the figure, namely, the separating line

x3= —x; + 1,
is
b= -1,
wy = 1’
Wy = 1.

The choice of sign for b is determined by the requirement that
b+ xyw, + xawy <0

where x; = 0 and x, = 0. (Any point that is not on the decision boundary can be
used to determine which side of the boundary is positive and which is negative; the
origin is particularly convenient to use when it is not on the boundary.)
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x2

X1

Figure 2.3 Desired response for the
logic function AND (for bipolar inputs).

1

Figure 2.4 The logic function Anp,
showing a possible decision boundary.
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Example 2.3 Response regions for the Or function

The logical Or function (for bipolar inputs and target) is defined as follows:

INPUT (x4, x2) OUTPUT (¢)

1,1 +1
(1, -1 +1
(- D +1

(-1, -1 -1

The weights must be chosen to provide a separating line, as illustrated in Figure
2.5. One example of suitable weights is

b =1,
wy =1,
wy =1,
giving the separating line
Xz = —x; — L.

The choice of sign for b is determined by the requirement that
b + X 1wy + X2W2>0

where x, = 0 and x, = 0.

*2

x1

Figure 2.5 The logic function Or, show-
ing a possible decision boundary.
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The preceding two mappings (which can each be solved by a single-layer
neural net) illustrate graphically the concept of linearly separable input. The input
points to be classified positive can be separated from the input points to be clas-
sified negative by a straight line. The equations of the decision boundaries are
not unique. We will return to these examples to illustrate each of the learning
rules in this chapter.

Note that if a bias weight were not included in these examples, the decision
boundary would be forced to go through the origin. In many cases-(including
Examples 2.2 and 2.3), that would change a problem that could be solved (i.e.,
learned, or one for which weights exist) into a problem that could not be solved.

Not all simple two-input, single-output mappings can be solved by a single-
layer net (even with a bias included), as is illustrated in Example 2.4.

Example 2.4 Response regions for the Xor function

The desired response of this net is as follows:

INPUT (x4, x2) OUTPUT (1)

a1 -1
(1, -1 +1
(-1, 1 +1
(-1, -1 -1

It is easy to see that no single straight line can separate the points for which
a positive response is desired from those for which a negative response is desired.

X2

Xt

Figure 2.6 Desired response for the
logic function Xor.
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2.1.4 Data Representation

The previous examples show the use of a bipolar (values 1 and — 1) representation
of the training data, rather than the binary representation used for the McCulloch-
Pitts neurons in Chapter 1. Many early neural network models used binary rep-
resentation, although in most cases it can be modified to bipolar form. The form
of the data may change the problem from one that can be solved by a simple
neural net to one that cannot, as is illustrated in Examples 2.5-2.7 for the Hebb
rule. Binary representation is also not as good as bipolar if we want the net to
generalize (i.e., respond to input data similar, but not identical to, training data).
Using bipolar input, missing data can be distinguished from mistaken data. Missing
values can be represented by “‘0’’ and mistakes by reversing the input value from
+1to —1, or vice versa. We shall discuss some of the issues relating to the choice
of binary versus bipolar representation further as they apply to particular neural
nets. In general, bipolar representation is preferable.

The remainder of this chapter focuses on three methods of training single-
layer neural nets that are useful for pattern classification: the Hebb rule, the
perceptron learning rule, and the delta rule (or least mean squares). The Hebb
rule, or correlational learning, is extremely simple but limited (even for linearly
separable problems); the training algorithms for the perceptron and for ADALINE
(adaptive linear neuron, trained by the delta rule) are closely related. Both are
iterative techniques that are guaranteed to converge under suitable circumstances.
The generalization of an ADALINE to a multilayer net (MADALINE) also will be
examined.

2.2 HEBB NET

The earliest and simplest learning rule for a neural net is generally known as the
Hebb rule. Hebb proposed that learning occurs by modification of the synapse
strengths (weights) in a manner such that if two interconnected neurons are both
“on’’ at the same time, then the weight between those neurons should be in-
creased. The original statement only talks about neurons firing at the same time
(and does not say anything about reinforcing neurons that do not fire at the same
time). However, a stronger form of learning occurs if we also increase the weights
if both neurons are “‘off”” at the same time. We use this extended Hebb rule
[McClelland & Rumelhart, 1988] because of its improved computational power
and shall refer to it as the Hebb rule.

We shall refer to a single-layer (feedforward) neural net trained using the
(extended) Hebb rule as a Hebb net. The Hebb rule is also used for training other
specific nets that are discussed later. Since we are considering a single-layer net,
one of the interconnected neurons will be an input unit and one an output unit
(since no input units are connected to each other, nor are any output units in-
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terconnected). If data are represented in bipolar form, it is easy to express the
desired weight update as

wi(new) = w;(old) + x;y.

If the data are binary, this formula does not distinguish between a training
pair in which an input unit is ‘“‘on’” and the target value is ‘‘off>’ and a training
pair in which both the input unit and the target value are ‘‘off.”” Examples 2.5
and 2.6 (in Section 2.2.2) illustrate the extreme limitations of the Hebb rule for
binary data. Example 2.7 shows the improved performance achieved by using

bipolar representation for both the input and target values.
I

s Ao / . Ll l, “!‘;
2.2.1 Algorithm(ﬂw s '/}9/ v TN e 9T fe =2 <:fl 1A ?,/‘ € / ,j L
Step 0. Initialize all weights: S Oy
w; =0 (i = 1ton).
Step 1. For each input training vector and target output pair, s : ¢, do steps
2-4.
Step 2. Set activations for input units:
Xi = §; (i = 1ton).
Step 3. Set activation for output unit:
Y =t

Step 4. Adjust the weights for 2
wi(new) = wi(old) + x/,x (i = 1ton). ><
Adjust the bias: |
b(new) = b(old) + y.

Note that the blas is adjusted exactly like a weight from a ‘‘unit’’ whose
output signal is always 1. The weight update can also be expressed in vector form
as '

w(newm;\

+ xy. .
This is often written in terms of the weight change, AW, as
Aw = xy
and
w(new) = w(old) + Aw.

There are several methods of implementing the Hebb rule for learning. The
foregoing algorithm requires only one pass through the training set; other equiv-
alent methods of finding the weights are described in Section 3.1.1, where the
Hebb rule for pattern association (in which the target is a vector) is presented.
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2.2.2 Application

Bias types of inputs are not explicitly used in the original formulation of Hebb
learning. However, they are included in the examples in this section (shown as
a third input component that is always 1) because without them, the problems
discussed cannot be solved.

Logic functions

Example 2.5 A Hebb net for the Anp function: binary inputs and targets
e sl s
Hpolan

INPUT TARGET '
(x; x2 1)
Q 1 1) 1
(1 00 0
o 11 0
(1 01 0

For each training input: target, the weight change is the product of the input
vector and the target value, i.e.,
e
Aw, = xyf, Aw,y = x5t Ab = t. ﬁ( < L

The new weights are the sum of the previous weights and the weight ;:ﬁange. Only
one iteration through the training vectors is required. The weight updates for the
first input are as follows:

INPUT TARGET WEIGHT CHANGES WEIGHTS
(x1 x2 1) (Aw; Aw, AD) ’ (wy wy b)
© 0 0

a 1 D 1 (1 1 1) a 1.1

The separating line (see Section 2.1.3) becomes
X2 = —Xy — 1.

The graph, presented in Figure 2.7, shows that the response of the net will now be
correct for the first input pattern. Presenting the second, third, and fourth training
inputs shows that because the target value is 0, no learning occurs. Thus, using
binary target values prevents the net from learning any pattern for which the target

is “‘off’:
INPUT TARGET WEIGHT CHANGES WEIGHTS
(xl X2 1) : (AW] AWz Ab) (W| Wo b)
a o 1) 0 (0 0 0) a 1 1
o 1 §] 0 © 0 0) a 1 1

0 o 1) 0 © 0 0) a 1
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x2
0 +
0 0

x1

Figure 2.7 Decision boundary for bi-
nary AND function using Hebb rule after
first training pair.

Example 2.6 A Hebb net for the Anp function: binary inputs,(bip(;lar targets )
(e oleg

i

INPUT TARGET
xp x2 1

a 1 1
a o -1
© 1 -1
© 0 -1

Presenting the first input, including a value of 1 for the third component, yields the

following:
INPUT TARGET WEIGHT CHANGES WEIGHTS
x1 x> 1 (Aw; Awy Ab) (wy wy b)
O 0 0
a 1 1) 1 (1 1 1) a 1 n

The separating line becomes
X2 = —X, — 1.

Figure 2.8 shows that the response of the net will now be correct for the first input
pattern.

Presenting the second, third, and fourth training patterns shows that learning
continues for each of these patterns (since the target value is now —1, rather than
0, as in Example 2.5).
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X

Figure 2.8 Decision boundary for AnD
\ function using Hebb rule after first train-
) ing pair (binary inputs, bipolar targets).

INPUT TARGET WEIGHT CHANGES WEIGHTS
x1 x2 1) © (Aw: Aw, Ab) (w1 wy b)
a o 1 -1 (-1 0 -1 © 1 0
© 1 1 ~1 © -1 -1 © 0 -1
© o0 1) -1 © ) © 0 -2

However, these weights do not provide the correct response for the first input pat-
tern.

The choice of training patterns can play a significant role in determining
which problems can be solved using the Hebb rule. The next example shows that
the AND function can be solved if we modify its representation to express the
inputs as well as the targets in bipolar form. Bipolar representation of the inputs
and targets allows mrodification of a weight when the input unit and the target
value are both ‘‘on’’ at the same time and when they are both “‘off”’ at the same
time. The algorithm is the same as that just given, except that now all units will
learn whenever there is an error in the output.

Example 2.7 A Hebb net for the Anp function: bipolar inputs and targets

INPUT TARGET

(x, X2 D

a r 1
a -1 ) -1
(-1 1 1) -1
(-1 -1 1) -1
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Presenting the first input, including a value of 1 for the third component, yields
the following:

i

INPUT TARGET WEIGHT CHANGES WEIGHTS
(x; x2 1 (Aw, Aw; Ab) (wi wy b)

‘ o o0 0
(1 1 1) 1 (1 1 1) (1 1 1

The separating line becomes
X = —x; — 1.
The graph in Figure 2.9 shows that the response of the net will now be correct

for the first input point (and also, by the way, for the input point (—1, — 1)). Pre-
senting the second input vector and target results in the following situation:

Do\
INPUT TARGET WEIGHT CHANGES WEIGHTS
(x1 x2 D < (Aw, Aw, Ab) (Wi wa b)
T a 1 1
o~ - .
a -1 -1 -1 1 -1) o 2 0
The separating line becomes
X2 = 0.
X
- +
\ )
- \ - Figure 2.9 Decision boundary for the

AND function using Hebb rule after first
training pair (bipolar inputs and targets).
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x1

Figure 2.10 Decision boundary for bi-
polar AND function using Hebb rule after
second training pattern (boundary is x;-
axis).

The graph in Figure 2.10 shows that the response of the net will now be correct
for the first two input points, (1, 1) and (1, —1), and also, incidentally, for the input
point (—1, —1). Presenting the third input vector and target yields the following:

INPUT TARGET WEIGHT CHANGES WEIGHTS
(-xl X2 1) - ’ (AW] AWZ Ab) (Wl Wao b)
o ‘ o 2 0

(-1 1 1 -1 Q1 -1 -1 a 1 =1

The separating line becomes
Xy = —x; + 1.

The graph in Figure 2.11 shows that the response of the net will now be correct
for the first three input points (and also, by the way, for the input point (—1,-1)).
Presenting the last point, we obtain the following:

INPUT TARGET WEIGHT CHANGES WEIGHTS

1 x2 1 . (Aw, Aw, Ab) (w, wy b)

, , a 1t -

(-1 =1 1) -1 ({1 1 -1 2 2 -2
T

Even though the weights have changed, the separating line is still
X2 = —x; + 1,

so the graph of the decision regions (the positive response and the negative response)
remains as in Figure 2.11.
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\x, e S =
N | > = ~X 1+ |

<

- . _ Figure 2.11 Decision boundary for bi-
polar AND function using Hebb rule after
third training pattern.

Character recognition

Example 2.8 A Hebb net to classify two-dimensional input patterns (representing letters)

A simple example of using the Hebb rule for character recognition involves training
the net to distinguish between the pattern ‘X"’ and the pattern “‘O”’. The patterns
can be represented as

# ... # . #H#H#
# . # . # .. . #
. # L. and # .. . #
. # L # # .. . #
# .. . # B X
Pattern 1 Pattern 2

To treat this example as a pattern classification problem with one output class,
we. will designate that class ‘X and take the pattern ‘O’ to be an example of
output that is not “*X.”

The first thing we need to do is to convert the patterns to input vectors. That
is easy to do by assigning each # the value 1 and each ‘‘.”’ the value — 1. To convert
from the two-dimensional pattern to an input vector, we simply concatenate the rows,
i.e., the second row of the pattern comes after the first row, the third row follows,
ect. Pattern 1 then becomes

}~-1-1-11,-11-11-1,-1-11-1-1,-11-11 -1,
I -1-~1-11,
and pattern 2 becomes
-1r11rr-,1-t-1-1,1-1-1-11,1-1-1-11,-1111 -1,

where a comma denotes the termination of a line of the original matrix. For computer
simulations, the program can be written so that the vector is read in from the two-
dimensional format.

-
\
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The correct response for the first pattern is “‘on,” or +1, so the weights after
presenting the first pattern are simply the input pattern. The bias weight after pre-
senting this is + 1. The correct response for the second pattern is *‘off,”” or — 1, so
the weight change when the second pattern is presented is

I-1-1-11,-1111-1,-1111~-1,-1111-1,1—-1—-1-11.

In addition, the weight change for the bias weight is — 1.

Adding the weight change.to the weights representing the first pattern gives
the final weights: ,

2-2-2-22,-2202-2,-2020-2,-2202-2,2-2-2-22.

The bias weight is 0.

Now, we compute the output of the net for each of the training patterns. The
net input (for any input pattern) is the dot product of the input pattern with the
weight vector. For the first training vector, the net input is 42, so the response is
positive, as desired. For the second training pattern, the net input is —42, so the
response is clearly negative, also as desired.

However, the net can also give reasonable responses to input patterns that are
similar, but not identical, to the training patterns. There are two types of changes
that can be made to one of the input patterns that will generate a new input pattern
for which it is reasonable to expect a response. The first type of change is usually
referred to as ‘‘mistakes in the data.”’ In this case, one or more components of the
input vector (corresponding to one or more pixels in the original pattern) have had
their sign reversed, changing a 1 to a — 1, or vice versa. The second type of change
is called “‘missing data.”” In this situation, one or more of the components of the
input vector have the value 0, rather than 1 or — 1. In general, a net can handle more
missing components than wrong components; in other words, with input data, ““It’s
better not to guess.”

Other simple examples

Example 2.9 Limitations of Hebb rule training for binary patterns

This example shows that the Hebb rule may fail, even if the problem is linearly
separable (and_even if 0 is not the target).
Consider the follpwing input and target output pairs:

1 1 1 —> 1

1 1 0 - \]
1 0 1 - 0
0 1 1 — 0

It is easy to see that the Hebb rule cannot learn any pattern for which the target is
0. So we must at least convert the targets to +1 and — 1. Now consider

1 1 1 — 1
1 1 0 — -1
1 0 1 — -1
0 1 1 — -1
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Figure 2.12 shows that the problem is now solvable, i.c., the input points
classified in one class (with target value + 1) are linearly separablc from those not
in the class (with target value —1). The figure also shows that a_nonzcro bias will
be necessary, since the separating plane does not pass through the origin. The plane
pictured is x; + x; + x3 + (—2.5) = 0, i.e., a weight vector of (1 1 1) and a bias

. Jof —2.5.

- The weights (and bias) are found by taking the sum of the weight changes that
occur at each stage of the algorithm. The weight change is simply the input pattern
(augmented by the fourth component, the input to the bias weight, which is always
1) multiplied by the target value for the pattern. We obtain:

‘ Weight change for first input pattern: i 1 1 1
- Weight change for second input pattern: -1 -1 0 -1
Y/ Weight change for third input pattern: -1 0 -1 -1
Weight change for fourth input pattern: 0O -1 -1 -1
Final weights (and bias) -1 -1 -1 =2

x3

@ Figure 2.12 Linear separation of binary
training inputs.

It is easy to see that these weights do not produce the correct output for the first
pattern.
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Example 2.10 Limitation of Hebb rule training for bipolar patterns

Examples 2.5, 2.6, and 2.7 show that even if the representation of the vectors does
not change the problem from unsolvable to solvable, it can affect whether the Hebb
rule works. In this example, we consider the same problem as in Example 2.9, but
with the input points (and target classifications) in bipolar form. Accordingly, we
have the following arrangement of values:

INPUT WEIGHT CHANGE WEIGHT
(xs+ x2 x3 1) TARGET (Awy Aw: ij Ab) (w1 wa2w3b)
(1] 00 0)
(1 1 11 1 (1 1 1 1) (111 1)
(1 1 -1 1) -1 (-1 -1 1 -1 (00 2 0)
(1 -1 1 1) -1 (-1 1 -1 - (-1 11 -1
(-1 1 1 1) -1 (1 -1 -1 -1 (000 -2

Again, it is clear that the weights do not give the correct output for the first input
pattern.

Figure 2.13 shows that the input points are linearly separable; one posssible
plane, x; + x; + x3 + (—2) = 0, to perform the separation is shown. This plane
corresponds to a weight vector of (1 1 1) and a bias of —2.

XA

Figure 2.13 Linear separation of bipolar
training inputs.
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2.3 PERCEPTRON

Perceptrons had perhaps the most far-reaching impact of any of the early neural
nets. The perceptron learning rule is a more powerful learning rule than the Hebb
rule. Under suitable assumptions, its iterative learning procedure can be proved
to converge to the correct weights, i.e., the weights that allow the net to produce
the correct output value for each of the training input patterns. Not too surpris-
ingly, one of the necessary assumptions is that such weights exist.

A number of different types of perceptrons are described in Rosenblatt (1962)
and in Minsky and Papert (1969, 1988). Although some perceptrons were self-
organizing, most were trained. Typically, the original perceptrons had three layers
of neurons—sensory units, associator units, and a response unit—forming an
approximate model of a retina. One particular simple perceptron [Block, 1962]
used binary activations for the sensory and associator units and an activation of
+1, 0, or —1 for the response unit. The sensory units were connected to the
associator units by connections with fixed weights having values of +1,0, or — 1,
assigned at random.

The activation function for each associator unit was the binary step function
with an arbitrary, but fixed, threshold. Thus, the signal sent from the associator
units to the output unit was a binary (0 or 1) signal. The output of the perceptron
is y = f(y-in), where the activation function is

1 ify_in> 0.
f(y_n) = 0 if —-0<yin=o9o
-1 ify_in< -9

The weights from the associator units to the response (or output) unit were
adjusted by the perceptron learning rule. For each training input, the net would
calculate the response of the output unit. Then the net would determine whether
an error occurred for this pattern (by comparing the calculated output with the
target value). The net did not distinguish between an error in which the calculated
output was zero and the target — 1, as opposed to an error in which the calculated
output was +1 and the target — 1. In either of these cases, the sign of the error
denotes that the weights should be changed in the direction indicated by the target
value. However, only the weights on the connections from units that sent a non-
zero signal to the output unit would be adjusted (since only these signals con-
tributed to the error). If an error occurred for a particular training input pattern,
the weights would be changed according to the formula

W,'(neW) = W,(Old) + atx;,

where the target value tis +1 or —1 and « is the learning rate. If an error did
not occur, the weights would not be changed. .
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Training would continue until no error occurred. The perceptron learning
rule convergence theorem states that if weights exist to allow the net to respond
correctly to all training patterns, then the rule’s procedure for adjusting the
weights will find values such that the net does respond correctly to all training
patterns (i.e., the net solves the problem-or learns the classification). Moreover,
the net will find these weights in a finite number of training steps. We will consider
a proof of this theorem in Section 2.3.4, since it helps clarify which aspects of
the many variations on perceptron learning are significant.

2.3.1 Architecture

Simple perceptron for pattern classification

The output from the associator units in the original simple perceptron was a binary
vector; that vector is treated as the input signal to the output unit in the sections
that follow. As the proof of the perceptron learning rule convergence theorem
given in Section 2.3.4 illustrates, the assumption of a binary input is not necessary.
Since only the weights from the associator units to the output unit could be ad-
justed, we limit our consideration to the single-layer portion of the net, shown in
Figure 2.14. Thus, the associator units function like input units, and the archi-
tecture is as given in the figure.

g

W,

. n
@—/ Figure 2.14 Perceptron to perform sin-

gle classification.

The goal of the net is to classify each input pattern as belonging, or not
belonging, to a particular class. Belonging is signified by the output unit giving a
response of + 1; not belonging is indicated by a response of — 1. The net is trained
to perform this classification by the iterative technique described earlier and given
in the algorithm that follows.
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2.3.2 Algorithm

The algorithm given here is suitable for either binary or bipolar input vectors (n-
tuples), with a bipolar target, fixed 0, and adjustable bias. The threshold 6 does
not play the same role as in the step function illustrated in Section 2.1.2; thus,
both a bias and a threshold are needed. The role of the threshold is discussed
following the presentation of the algorithm. The algorithm is not particularly sen-
sitive to the initial values of the weights or the value of the learning rate.

Step 0. Initialize weights and bias.
(For simplicity, set weights and bias to zero.)
Set learning rate o (0 < o = 1).
(For simplicity, o can be set to 1.)
Step 1. While stopping condition is false, do Steps 2-6.
Step 2. For each training pair s:t, do Steps 3-5.

Step 3. Set activations of input units:
Xi = 8;.
Step 4. Compute response of output unit:

y—in = b + > x;w;;
i

1 if y.in> 0

y = 0 if -0<y.in=29
-1 ifyin< —0
Step 5. Update weights and bias if an error occurred
for this pattern.
Ify+#1

W,'(HCW) = W,(Old) + @‘[,
b(new) = b(old) + «at.

else

wi(new) = w;(old),
b(new) = b(old).

Step 6. Test stopping condition:
If no weights changed in Step 2, stop; else, continue.

Note that only weights connecting active input units (x; # 0) are updated.
Also, weights are updated only for patterns that do not produce the correct value
of y. This means that as more training patterns produce the correct response, less
learning occurs. This is in contrast to the training of the ADALINE units described
in Section 2.4, in which learning is based on the difference between y_in and 1.
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The threshold on the activation function for the response unit is a fixed,
non-negative value 6. The form of the activation function for the output unit
(response unit) is such that there is an *‘undecided’’ band (of fixed width deter-
mined by 6) separating the region of positive response from that of negative re-
sponse. Thus, the previous analysis of the interchangeability of bias and threshold
does not apply, because changing 6 would change the width of the band, not just
the position.

Note that instead of one separating line, we have a line separating the region
of positive response from the region of zero response, namely, the line bounding
the inequality -

wWixy + woax, + b > 6,

and a line separating the region of zero response from the region of negative
response, namely, the line bounding the inequality

wix; + waxs + b < —0.

2.3.3 Application

Logic functions
Example 2.11 A Perceptron for the ANp function: binary inputs, bipolar targets

Let us consider again the Anp function with binary input and bipolar target, now
using the perceptron learning rule. The training data are as given in Example 2.6 for
the Hebb rule. An adjustable bias is included, since it is necessary if a single-layer
net is to be able to solve this problem. For simplicity, we take @ = 1 and set the
initial weights and bias to 0, as indicated. However, to illustrate the role of the
threshold, we take@ﬁb

The weight change is Aw = 1(x,, x,, 1) if an error has occurred and zero
otherwise. Presenting the first input, we have:

WEIGHT
INPUT v NET ouT TARGET CHANGES WEIGHTS

(x;  x2 D (w, w2 b)
k © 0 0)
! 1 1) 0 0 1 (1 1 1) Q 1 1)

The separating lines become

QO

X|+XZ+1=.2
and

Xy +x3+ 1= -.2.




Sec. 2.3 Perceptron 63

x2

N+

R Figure 2.15 Decision boundary for logic
function AND after first training input.

The graph in Figure 2.15 shows that the response of the net will now be correct for
the first input pattern.
Presenting the second input yields the following:

WEIGHT
INPUT NET OUT  TARGET CHANGES WEIGHTS
(x1 x2 1) W, wy b)
(1 10

a o 2 1 -1 (-1 0 -1 ©0© @ o0

The separating lines become

and
X2 = — 2

The graph in Figure 2.16 shows that the response of the net will now (still) be correct
for the first input point.
For the third input, we have:

WEIGHT
INPUT NET ouT TARGET CHANGES WEIGHTS
(xi x2 1 (Wi w, b)
(0] 1 0)
© 1 1) 1 1 -1 oo -1 -1 (O 0 -1

Since the components of the input patterns are nonnegative and the components of
the weight vector are nonpositive, the response of the net will be negative (or zero).
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X2

X1

Figure 2.16 Decision boundary after
second training input.

To complete the first epoch of training, we present the fourth training pattern;

WEIGHT

INPUT NET OUT TARGET CHANGES WEIGHTS

xy x D W w, b)
© 0 -1

© o0 1 -1 -1 -1 © o0-lo) (0 0 -

The response for all of the input patterns is negative for the weights derived; but
since the response for input pattern (1, 1) is not correct, we are not finished.

The second epoch of training yields the following weight updates for the first
input:

WEIGHT
INPUT NET out TARGET CHANGES WEIGHTS

(xi x b Wi wy b)
o 0 -1)
(1 1 1) -1 -1 1 a 1 n q 1 0)

The separating lines become

X|+X2=.2

and

X+ xp = -.2.
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The graph in Figure 2.17 shows that the response of the net will now be correct for

a, 1.

x2

N ™

Figure 2.17 Boundary after first train-
ing input of second epoch.

For the second input in the second epoch, we have:

WEIGHT
INPUT NET OuT TARGET CHANGES WEIGHTS
(x; x2» 1 (w, ws b)

(1 1 0)
( 0 D 1 1 -1 (-1 0 ~-1) (© I -1

The separating lines become

and

The graph in Figure 2.18 shows that the response of the net will now be correct
(negative) for the input points (1, 0) and (0, 0); the response for input points (0, 1)

and (1, 1) will be 0, since the net inEut would be 0, which is between —.2 and .2
o = .2).

In the second epoch, the third input yields:

WEIGHT
INPUT NET ouT TARGET CHANGES WEIGHTS
(xi x» 1 W, w, b)
© 1 -1
(4 1 1) 0 0 -1 o -1 -1 (© 0 -2)
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X1

Figure 2.18 Boundary after second
input of second epoch.

Again, the response will be negative for all of the input.
To complete the second epoch of training, we present the fourth training pat-

tern:

INPUT NET ouT
(xi x 1)
© 0 1) -2 -1

The results for the third epoch are:

INPUT NET OuT

xi x» 1)
e
(1 I 1) =2 -1
a 00 0 0
o @©n -1 -1
© 0 1 -2 -1

The results for the fourth epo;:h are:

¢ 1 1) -1 -1
4! 0 1) 0 0
© 1 D 0 0
© 0 1) -3 -1

WEIGHTS
TARGET  CHANGE WEIGHTS
w1 wy b)
© o -2
-1 © 00 © o -2
WEIGHT
TARGET CHANGES WEIGHTS
e w1 w2 b)
1 Bt AU g gy
1 1D a1 -
-1 (=1 0 -1 (© 1 --2
= © -0 0 O 1 -2
g © 0 0 © 1 -2
1 a 1 a2 -
-1 (-1 0 -1 © 2 -2
-1 © -1 - © 1 -3
-1 © 0 0 © 1

T =3)
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For the fifth epoch, we have

¥ T PR
(1 1 D -2 -1 1 '(1 1 N 2 =2)
Qa 0o n -1 -1 —1 (] 0 0 2 =2
(1] 1 1 0 0 -1 (1] -1 -1 q 1 -3
(1] 0 1) -3 -1 -1 © 0 0 A 1 =3
and for the sixth epoch,
1 1 1) -1 -1 1 (1 1 N 2 2 -2)
(1 01 0 0 -1 (-1 0o -1 2 -3)
© I -1 -1 -1 (] 0 0 PR K))
(] 0D -3 -1 -1 (0] 0 0 2 =3
The results for the seventh epoch are:
(1 1 1) 0 0 1 Qa 1 N @ 3 -2
a 0 0 0 -1 (-1 0 -1 q 3 -3
o 1 1) 0 0 -1 o -1 -1 2 -4
(1] 0 1) -4 -1 -1 © 0 0 Q 2 -4
The eighth epoch yields
(1 1 1 -1 -1 1 a 1 1) 2 3 -3)
a. 01 -1 —1 -1 (1] 0 0 @ 3 -3
(1] 1 1) 0 0 -1 (] -1 -1 @ 2 -4
© 0o 1 -4 -1 -1 (v} 0 0 (@ 2 -4
and the ninth
a 1 D 0 0 1 Q1 1 N @ 3 -3
(1 0 1) 0 0 -1 (-1 0 -1 @ 3 -9
© 1 b -1 -1 -1 (1] o 0 @ 3 -3
© 0 1) -4 -1 -1 © 0 0 Q 3 -4
Finally, the results for the tenth epoch are:
(L 1 1) 1 1 1 (0] 0 0 @ 3 -9
a 0 1 =2 -1 -1 © 0 0 3 -4
© 1 1 -1 -1 -1 (1] 0 0 @ 3 -9
© 01 -4 -1 -1 © 0 0 @ 3 -4
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Thus, the positive response is given by all points such that
26 + 3x; — 4> 2,
with boundary line '

oo 22,1
2 = X 5°

3:
and the negative response is given by all points such that
2.X‘| + 3X2 -4 < *.2,

with boundary line

(see Figure 2.19.)

Figure 2.19 Final decision boundaries
for AND function in perceptron learning.

Since the proof of the perceptron learning rule convergence theorem (Section
2.3.4) shows that binary input is not required, and in previous examples bipolar
input was often preferable, we consider again the previous example, but with
bipolar inputs, an adjustable bias, and & = 0. This variation provides the most
direct comparison with Widrow-Hoff learning (an AbALINE net), which we con-
sider in the next section. Note that it is not necessary to modify the training set
so that all patterns are mapped to +1 (as is done in the proof of the perceptron
learning rule convergence theorem); the weight adjustment is /x whenever the
response of the net to input vector x is incorrect. The target value is still bipolar.
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Example 2.12 A Perceptron for the Anp function: bipolar inputs and targets

The training process for bipolar input, a = 1, and threshold and initial weights =

0 is:
WEIGHT
INPUT NET OUuT TARGET CHANGES WEIGHTS

(xl X2 1) (W| Wso b)

(1] 0 0)
(1 10 0 0 1 (1 1 n A 1 1)
a -1 1 1 1 -1 (-1 1 -1 (© 2 0)
(-1 11 2 1 -1 ¢! -1 -1 1 -1
(-1 -1 1) =3 -1 -1 (4] 0 0 1 -1)

In the second epoch of training, we have:

(1 1D 1 1 1 o 0 0 Q 1 -1
4 -1 1 -1 -1 -1 © 0 0 « 1 -1
(-1 1 1 -1 -1 -1 © 0 0 A 1 -1
(-1 -1 1) -3 -1 -1 © 0 0 1 -1

Since all the Aw’s are 0 in epoch 2, the system was fully trained after the first epoch.

It seems intuitively obvious that a procedure that could continue to learn to
improve its weights even after the classifications are all correct would be better
than a learning rule in which weight updates cease as soon as all training patterns
are classified correctly. However, the foregoing example shows that the change
from binary to bipolar representation improves the results rather spectacularly.

We next show that the perceptron with @« = 1 and 8 = .1 can solve the
problem the Hebb rule could not.

Other simple examples

Example 2.13 Perceptron training is more powerful than Hebb rule training

The mapping of interest maps the first three components of the input vector onto a
target value that is 1 if there are no zero inputs and that is —1 if there is one zero
input. (If there are two or three¢ zeros in the input, we do not specify the target
value.) This is a portion of the parity problem for three inputs. The fourth component
of the input vector is the input to the bias weight and is therefore always 1. The
weight change vector is left blank if no error has occurred for a particular pattern.
The learning rate is & = 1, and the threshold 8 = .1. We show the following selected
epochs:
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INPUT NET OUT TARGET WEIGHT CHANGE WEIGHTS

X1 X2 X3 1 ) (Wl Wy Ws b)

@ o0 o0 0)

Epoch 1:

air 1 n o 0 1 (a 1 1 1 11 1)
airomn 3 1 -1 (-1 -1 0 -1 (© 01 0)
ao1 1n 1 1 -1 (-1 0 -1 -1 00 -1
ot 11 -1 -1 -1 ( y(-1t 00 -1
Epoch 2:

airi11n -2 -1 1 q 11 1 (© 11 0)
airon 1 1 -1 (-1 -1 0 -1H((-1 01 -1
@ao 11 -1 -1 -1 ( y(-1 01 -1
o111 O 0 -1 o -1 -1 -D(-1-10 =2
Epoch 3:

ai1 11y -4 -1 1 q 1 1 1 (© 01 -1
air1o1mn-1 -1 -1 ( ) (0. 01 -1
ao11n o 0 -1 (-1 0 -1 -DH(-1 00 -2
o1 1 1nH -2 -1 -1 ( ) (-1 00 =2)
Epoch 4:

aitri11n -3 -1 1 (1 1 1 D@ 11 -1
airomn o 0 -1 (-1 -1 0 -D(1 01 =2
ao1mn-2 -1 -1 ( ) (-1 01 =2)
o1 1 n -1 -1 -1 ( y(-1 01 =2
Epoch 5:

air1r1n-2 -1 1 (1 1 1 D © 12 -1
ai1o0o1mn o 0 -1 (-1 -1 0 -1 (-1 02 =2
ao1 1y -1 -1 -1 ( ) (-1 02 =2
o111 n 0 0 -1 0w -1 -1 -D((-1-11 =3)
Epoch 10: )
airi1n-3 -1 1 a 1 1 1nd 12 =3)
atro1n -1 -1 -1 ( ) (1 12 =3
ao1 np o 0 -1 (-1 0 -1 -1 (0 11 -4
o1 1 1n -2 -1 -1 ( ) (0 11 -4




Sec. 2.3

Perceptron

Epoch 15:
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a1 o0
a0 10D
01 10D
Epoch 20:

a1 1
atr o
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Epoch 25:
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10 1
011
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0 0
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-1 -1
1 1
-3 -1
-2 -1
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Character recognition

Application Procedure
Apply training algorithm to set the weights.

Step 0.
Step 1.

For each input vector x to be classified, do Steps 2-3.

Step 2.
Step 3.
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Set activations of input units.
Compute response of output unit:
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Example 2.14 A Perceptron to classify letters from different fonts: one output class
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—4)
-5)
-5
—6)

~6)
—6)

-7
—-8)
~8)
—-8)

—-8)
—-8)
—-8)
-8)

As the first example of using the perceptron for character recognition, consider the
21 input patterns in Figure 2.20 as examples of A or not-A. In other words, we train
the perceptron to classify each of these vectors as belonging, or not belonging, to
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the class A. In that case, the target value for each pattern is either 1 or —1; only
the first component of the target vector shown is applicable. The net is as shown in
Figure 2.14, and n = 63. There are three examples of A and 18 examples of not-A
in Figure 2.20.

We could, of course, use the same vectors as examples of B or not-B and train
the net in a similar manner. Note, however, that because we are using a single-layer
net, the weights for the output unit signifying A do not have any interaction with
the -weights for the output unit signifying B. Therefore, we can solve these two
problems at the same time, by allowing a column of weights for each output unit.
Our net would have 63 input units and 2 output units. The first output unit would
correspond to ‘A or not-A”’, the second unit to *‘B or not-B.”’ Continuing this idea,
we can identify 7 output units, one for each of the 7 categories into which we wish
to classify our input.

Ideally, when an unknown character is presented to the net, the net’s output
consists of a single “‘yes’’ and six ‘‘nos.” In practice, that may not happen, but the
net may produce several guesses that can be resolved by other methods, such as
considering the strengths of the activations of the various output units prior to setting
the threshold or examining the context in which the ill-classified character occurs.

Example 2.15 A Perceptron to classify letters from different fonts: several output classes

The perceptron shown in Figure 2.14 can be extended easily to the case where the
input vectors belong to one (or more) of several categories. In this type of application,
there is an output unit representing each of the categories to which the input vectors
may belong. The architecture of such a net is shown in Figure 2.21.

Figure 2.21 Perceptron to classify input
into seven categories.
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For this example, each input vector is a 63-tuple representing a letter expressed
as a pattern on a 7 X 9 grid of pixels. The training patterns are illustrated in Figure
2.20. There are seven categories to which each input vector may belong, so there
are seven components to the output vector, each representing a letter: A, B, C, D,
E, K, or J. For ease of reading, we show the target output pattern indicating that
the input was an “A’”’ as (A ------- ,a“B”"(¢B------ ), etc.

The training input patterns and target responses must be converted to an ap-
propriate form for the neural net to process. A bipolar representation has better
computational characteristics than does a binary representation. The input patterns
may be converted to bipolar vectors as described in Example 2.8; the target output
pattern (A - - - - - - - ) becomes the bipolar vector (1, -1, —1, -1, -1, -1, —1)
and the target pattern (- B - - - - - - ) is represented by the bipolar vector (-1, 1, —1,
-1, -1, -1, = 1).

A modified training algorithm for several output categories (threshold = 0,
learning rate = 1, bipolar training pairs) is as follows:

Step 0. Initialize weights and biases
(0 or small random values).
Step 1. While stopping condition is false, do Steps 1-6.
Step 2. For each bipolar training pair s : t, do Steps 3-5.

Step 3. Set activation of each input unit, i = 1,. .., n:
X;i = §;.
Step 4. Compute activation of each output unit,
ji=1L...,m

y_inj = bj + 2 XiWij.
i

1 ify_in;>6
y; = 0 if-0=y.in,=6
-1 ify_in;< -9

Step 5. Update biases and v‘veight‘s, i=1...,m
i=1,...,n
If ¢ # Yis then

bi(new) = bjold) + ¢;
wii(new) = w;(old) + 5x;.

Else, biases and weights remain unchanged.
Step 6. Test for stopping condition:

If no weight changes occurred in Step 2, stop; otherwise,
continue.

After training, the net correctly classifies each of the training vectors.

The performance of the net shown in Figure 2.21 in classifying input vectors
that are similar to the training vectors is shown in Figure 2.22. Each of the input
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patterns is a training input pattern with a few of its pixels changed. The pixels
where the input pattern differs from the training pattern are indicated by @ for
a pixel that is ““on”” now but was ‘‘off*” in the training pattern, and O for a pixel
that is “‘off” now but was originally ‘‘on.”’

2.3.4 Perceptron Learning Rule Convergence Theorem

The statement and proof of the perceptron learning rule convergence theorem
given here are similar to those presented in several other sources [Hertz, Krogh,
& Palmer, 1991; Minsky & Papert, 1988; Arbib, 1987]. Each of these provides a
slightly different perspective and insights into the essential aspects of the rule.
The fact that the weight vector is perpendicular to the plane separating the input
patterns at each step of the learning processes [Hertz, Krogh, & Palmer, 1991]
can be used to interpret the degree of difficulty of training a perceptron for different
types of input.
The perceptron learning rule is as follows:
Given a finite set of P input training vectors

x(p),) p=1,...,P,
each with an associated target value
t(p), p=1,...,P,
which is either + 1 or — 1, and an activation functiony = f(y—_in), where
1 ify_in>9
y = 0 f —0=yin=296

-1 ify_in< -0,

the weights are updated as follows:
If y # ¢, then

w (new) = w (old) + rx;
else
no change in the weights.

The perceptron learning rule convergence theorem is:

If there is a weight vector w* such that f(x(p)-w*) = t(p) for all p, then
for any starting vector w, the perceptron learning rule will converge to a weight
vector (not necessarily unique and not necessarily w*) that gives the correct re-
sponse for all training patterns, and it will do so in a finite number of steps.

The proof of the theorem is simplified by the observation that the training
set can be considered to consist of two parts:

F* = {x such that the target value is + 1}
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and

F~ = {x such that the target value is — 1}.
A new training set is then defined as
F=F"U-F-,
where
—F~ = {—xsuch that x is in F~}.

In order to simplify thp algebra slightly, we shall assume, without loss of gen-
erality, that 6 = 0 and a = 1 in the proof. The existence of a solution of the
original problem, namely the existence of a weight vector w* for which

x-w* > ( ifxisin F*

and
Xxw* <0 if xisin F—,

is equivalent to the existence of a weight vector w* for which
xw¥ > ( if xis in F.

All target values for the modified training set are + 1. If the response of the net
is incorrect for a given training input, the weights are updated according to

w(new) = w(old) + x.

Note that the input training vectors must each have an additional component
(which is always 1) included to account for the signal to the bias weight.

We now sketch the proof of this remarkable convergence theorem, because
of the light that it sheds on the wide variety of forms of perceptron learning that
are guaranteed to converge. As mentioned, we assume that the training set has
been modified so that all targets are + 1. Note that this will involve reversing the
sign of all components (including the input component corresponding to the bias)
for any input vectors for which the target was originally — 1.

We now consider the sequence of input training vectors for which a weight
change occurs. We must show that this sequence is finite.

Let the starting weights be denoted by w(0), the first new weights by w(l),
etc. If x(0) is the first training vector for which an error has occurred, then

w(l) = w(0) + x(0) (where, by assumption, x(0)-w(0) < 0).

If another error occurs, we denote the vector x(1); x(1) may be the same as x(0)

if no errors have occurred for any other training vectors, or x(1) may be different
from x(0). In either case,

w(2) = w(l) + x(1) (where, by assumption, x(1)-w(1) < 0).
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At any stage, say, k, of the process, the weights are changed if and only if the
current weights fail to produce the correct (positive) response for the current
input vector, i.e., if x(k — 1)>-w(k — 1) = 0. Combining the successive weight
changes gives

w(k) = w(0) + x(0) + x(1) + x(2) + -+ + x(k — 1).

We now show that & cannot be arbitrarily large.
Let w* be a weight vector such that x-w* > 0 for all training vectors in F.
-Let m = min{x-w*}, where the minimum is taken over all training vectors in F;
this minimum exists as long as there are only finitely many training vectors. Now,

wk)'w* = [w(0) + x(0) + x(1) + x(2) + - + x(k — I)]-w*
= w(0)w* + km

since x(i)w* =z mforeachi, 1 =i < P,
The Cauchy-Schwartz inequality states that for any vectors a and b,

(@b)* = [l bl?,

or
(ab)?
[lal* = BE (for |Ib]* = 0).
Therefore,
(w(k)-w*)?
w(k)|]? = ———
_ WO)-w* + km)?
B [[w*||?

This shows that the squared length of the weight vector grows faster than k2,
where k is the number of time the weights have changed.

However, to show that the length cannot continue to grow indefinitely, con-
sider

wk) =wk — 1) + x(tk — 1),
together with the fact that
x(tk — Dwk — 1) = 0.
By simple algebra,
Iw(I? = wtk — DI? + 2x(k — D-w(k — 1) + |Ix(k — D
= wtk — DI? + [Ix(k — DI
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Now let M = max {|| x |* for all x in the training set}; then
Iw(k)I? < lIwk — DIP + |x(k — DI
= wtk — 2 + |Ix(k = 2)I? + [x(k — DI?

= [wOIF + IxO)F + - + [x(k — D|?
< [WO)? + kM.

Thus, the squared length grows less rapidly than linearly in k.
Combining the inequalities

(WO)W* + km)?
[Iw*|[>

Iw(o)|? =

and
[w(k)? < |w()|*> + kM

shows that the ;iumber of times that the weights may change is bounded. Spe-
cifically,
(w(0)-w* + km)?
[Iw* 12

= W) = |wO)? + kM.

Again, to simplify the algebra, assume (without loss of generality) that w(0) = 0.
Then the maximum possible number of times the weights may change is given by
(km)?

lIw*|[?

= kM,

or

2
g < M

m
Since the assumption that w* exists can be restated, without loss of generality,
as the assumption that there is a solution weight vector of unit length (and the
definition of m is modified accordingly), the maximum number of weight updates
is M/m*. Note, however, that many more computations may be required, since
very few input vectors may generate an error during any one epoch of training.
Also, since w* is unknown (and therefore, so is m), the number of weight updates
cannot be predicted from the preceding inequality.

The foregoing proof shows that many variations in the perceptron learning
rule are possible. Several of these variations are explicitly mentioned in Chapter
11 of Miqsky and Papert (1988).

The original restriction that the coefficients of the patterns be binary is un-
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necessary. All that is required is that there be a finite maximum norm of the
training vectors (or at least a finite upper bound to the norm). Training may take
a long time (a large number of steps) if there are training vectors that are very
small in norm, since this would cause small m to have a small value. The argument
of the proof is unchanged if a nonzero value of 6 is used (although changing the
value of 6 may change a problem from solvable to unsolvable or vice versa). Also,
the use of a learning rate other than 1 will not change the basic argument of the
proof (see Exercise 2.8). Note that there is no requirement that there can be only
finitely many training vectors, as long as the norm of the training vectors is
bounded (and bounded away from 0 as well). The actual target values do not
matter, either; the learning law simply requires that the weights be incremented
by the input vector (or a multiple of it) whenever the response of the net is incorrect
(and that the training vectors can be stated in such a way that they all should give
the same response of the net).

Variations on the learning step include setting the learning rate o to any
nonnegative constant (Minsky starts by setting it specifically to 1), setting a to
1/jlx|| so that the weight change is a unit vector, and setting o to (x-w)/||x||*> (which
makes the weight change just enough for the pattern x to be classified correctly
at this step).

Minsky sets the initial weights equal to an arbitrary training pattern. Others
usually indicate small random values.

Note also that since the procedure will converge from an arbitrary starting
set of weights, the process is error correcting, as long as the errors do not occur
too often (and the process is not stopped before error correction occurs).

2.4 ADALINE

The ADALINE (ADpaptive Linear NEuron) [Widrow & Hoff, 1960] typically uses -
bipolar (1 or — 1) activations for its input signals and its target output (although -
it is not restricted to such values). The weights on the connections from the input-
units to the ADALINE are adjustable. The ADALINE also has a bias, which acts like
an adjustable weight on a connection from a unit whose activation is always 1.

In general, an ADALINE can be trained using the delta rule, also known as
the least mean squares (LMS) or Widrow-Hoff rule. The rule (Section 2.4.2) can
also be used for single-layer nets with several output units; an ADALINE is a special
case in which there is only one output unit. During training, the activation of the
unit is its net input, i.e., the activation function is the identity function. The
learning rule minimizes the mean squared error between the activation and the
target value. This allows the net to continue learning on all training patterns, even
after the correct output value is generated (if a threshold function is applied) for
some patterns.

After training, if the net is being used for pattern classification in which the
desired output is either a +1 or a —1, a threshold function is applied to the net
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input to obtain the activation. If the net input to the ADALINE is greater than or
equal to O, then its activation is set to 1; otherwise it is set to —1. Any problem
for which the input patterns corresponding to the output value +1 are linearly
separable from input patterns corresponding to the output value — 1 can be mod-
eled successfully by an ADALINE unit. An application algorithm is given in Section
2.4.3 to illustrate the use of the activation function after the net is trained.

In Section 2.4.4, we shall see how a heuristic learning rule can be used to
train a multilayer combination of ADALINES, known as a MADALINE.

2.4.1 Architecture

An ADALINE is a single unit (neuron) that receives input from several units. It
also receives input from a *‘unit’’ whose signal is always + 1, in order for the bias
weight to be trained by the same process (the delta rule) as is used to train the
other weights. A single ADALINE is shown in Figure 2.23.

-

O

b
: 1
@ "',,% Figure 2.23 Architecture of an
ADALINE.

Several ADALINES that receive signals from the same input units can be
combined in a single-layer net, as described for the perceptron (Section 2.3.3).
If, however, ADALINES are combined so that the output from some of them be-
comes input for others of them, then the net becomes multilayer, and determining
the weights is more difficult. Such a multilayer net, known as a MADALINE, is
considered in Section 2.4.5.

2.4.2 Algorithm

A training algorithm for an ADALINE is as follows:
Step 0. Initialize weights.
(Small random values are usually used.)
Set learning rate a.
(See comments following algorithm.)
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Step 1. While stopping condition is false, do Steps 2-6.
Step 2. For each bipolar training pair s:t, do Steps 3-5.

Step 3. Set activations of input units, i = 1, ..., n:
Xi = §;.
Step 4. Compute net input to output unit:

y_in = b + >, xiw;.

Step 5. .Update bias and weights, i = 1, ..., n
b(new) = b(old) + alt — y_in).
winew) = wiold) + a(t — y_in)x;.

Step 6. Test for stopping condition:
If the largest weight change that occurred in Step 2 is

smaller than a specified tolerance, then stop; otherwise
continue.

Setting the learning rate to a suitable value requires some care. According
to Hecht-Nielsen (1990), an upper bound for its value can be found from the largest
eigenvalue of the correlation matrix R of the input (row) vectors x(p):

1 P
R = P > x(p)'x(p),
p=1

4
namely,

o < one-half the largest eigenvalue of R.

However, since R does not need to be calculated to compute the weight updates,
it is common simply to take a small value for a (such as « = .1) initially. If too
large a value is chosen, the learning process will not converge; if too small a value
is chosen, learning will be extremely slow [Hecht-Nielsen, 1990]. The choice of
learning rate and methods of modifying it are considered further in Chapter 6.
For a single neuron, a practical range for the learning rate a is 0.1 < na = 1.0,
where n is the number of input units [Widrow, Winter & Baxter, 1988].

The proof of the convergence of the ADALINE training process is essentially
contained in the derivation of the delta rule, which is given in Section 2.4.4.

2.4.3 Applications

After training, an ADALINE unit can be used to classify input patterns. If the target
values are bivalent (binary or bipolar), a step function can be applied as the
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activation function for the output unit. The following procedure shows the step
function for bipolar targets, the most common case:

Step 0. Initialize weights
(from ADALINE training algorithm given in Section 2.4.2).
Step 1. For each bipolar input vector x, do Steps 2-4.
Step 2. Set activations of the input units to x.
Step 3. Compute net input to output unit:

y-in = b + 3 x;w;.

Step 4. Apply the activation function:

_ 1 ify.in=0;
Y=1-1 if y_in < 0.

Simple examples

The weights (and biases) in Examples 2.16-2.19 give the minimum total squared
error for each set of training patterns. Good approximations to these values can
be found using the algorithm in Section 2.4.2 with a small learning rate.

Example 2.16 An ApavLine for the Anp function: binary inputs, bipolar targets

Even though the ApaLINE was presented originally for bipolar inputs and targets,
the delta rule also applies to binary input. In this example, we consider the Anp
function with binary input and bipolar targets. The function is defined by the fol-
lowing four training patterns:

Xy X2 t
1 1 1
I 0 -1
0 1 -1
0 0 -1

As indicated in the derivation of the delta rule (Section 2.4.4), an ADALINE is
designed to find weights that minimize the total error

4
E = 3 (xi(pwy + x2(p)wa + wo — H(p)),

p=1
where
xi(p)wy + x2(pIwz + wy

is the net input to the output unit for pattern p and #(p) is the associated target for
pattern p.
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Weights that minimize this error are

w; =1
and
wy =1,
with the bias
wo = —3
0= ~35-

Thus, the separating line is

x|+x2—%=0.

The total squared error for the four training patterns with these weights is 1.
A minor modification to Example 2.11 (setting 8 = 0) shows that for the per-

ceptron, the boundary line is
2 4
X2 = —7— X, + =

3 3

(The two boundary lines coincide when 6 = 0.) The total squared error for the
minimizing weights found by the perceptron is 10/9.

Example 2.17 An ApaLine for the Anp function: bipolar inputs and targets
The weights that minimize the total error for the bipolar form of the Anp function

are
ool
' 2
and
oo L
2 2 ’
with the bias
wo = —1
o 2 .
Thus, the separating line is
1 1 1
Exl+§x2—§=0,

which is of course the same line as

X1 +x—-1=0,

as found by the perceptron in Example 2.12.
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Example 2.18 An ApaLine for the Anp Nor function: bipolar inputs and targets

The logic function x; AND NoT x- is defined by the following bipolar input and target
patterns:

Xy x2 ot
1 I -1
1 -1 1

-1 1 -1

-1 -1 -1

Weights that minimize the total squared error for the bipolar form of the Anp Not
function are

oo L
)
and
w, = — 1
2 = 2 )
with the bias
wo = —1
[ B 2 .
Thus, the separating line is
1 1 1
=X E)Cz d '2' =0

Example 2.19 An ApaLinE for the Or function: bipolar inputs and targets

The logic function x; Or x; is defined by the following bipolar input and target
patterns:

X X t
1 1 1
1 -1 1

-1 1 1

-1 -1 -1

Weights that minimize the total squared error for the bipolar form of the Or function
are

B | —
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and

0=

with the bias

N |-

Thus, the separating line is

l +l +
2X| 2X2

N =
Il
g

2.4.4 Derivations

Delta rule for single output unit

The delta rule changes the weights of the neural connections so as to minimize
the difference between the net input to the output unit, y_in, and the target value
t. The aim is to minimize the error over all training patterns. However, this is
accomplished by reducing the error for each pattern, one at a time. Weight cor-
rections can also be accumulated over a number of training patterns (so-called
batch updating) if desired. In order to distinguish between the fixed (but arbitrary)
index for the weight whose adjustment is being determined in the derivation that
follows and the index of summation needed in the derivation, we use the index
I for the weight and the index i for the summation. We shall return to the more
standard lowercase indices for weights whenever this distinction is not needed.
The delta rule for adjusting the Ith weight (for each pattern) is

Aw, = aft — y_in)x,.

The nomenclature we use in the derivation is as follows:

X vector of activations of input units, an n-tuple.
y_in the net input to output unit Y is
n
y-in = Y xw;.
i=1
t target output.

Derivation.  The squared error for a particular training pattern is
E = (t — y_in)%

E is a function of all of the weights, w;, i = 1, ..., n. The gradient of E is the
vector consisting of the partial derivatives of E with respect to each of the weights,
The gradient gives the direction of most rapid increase in E; the opposite direction
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gives the most rapid decrease in the error. The error can be reduced by adjusting

. . ) ) oFE
the weight w; in the direction of — Pl
. Wy

n
Since y_in = > xw;,

i=1

oF doy—in

— = =2t — y_i

owy ( an) owy
= =2(t — y_in)x,.

Thus, the local error will be reduced most rapidly (for a given learning rate) by
adjusting the weights. according to the delta rule,

Aw; = alt — y_in)x;.

Delta rule for several output units

The derivation given in this subsection allows for more than one output unit. The
weights are changed to reduce the difference between the net input to the output
unit, y_in;, and the target value ¢,. This formulation reduces the error for each
pattern. Weight corrections can also be accumulated over a number of training
patterns (so-called batch updating) if desired.

The delta rule for adjusting the weight from the Ith input unit to the Jth
output unit (for each pattern) is

Awyy = oty ~ y_ing)xs.

Derivation. The squared error for a particular training pattern is

E = 2 (tj - y_in,-)z.
Jj=1

E is a function of all of the weights. The gradient of E is a vector consisting of
the partial derivatives of E with respect to each of the weights. This vector gives
the direction of most rapid increase in E; the opposite direction gives the direction
of most rapid decrease in the error. The error can be reduced most rapidly by
adjusting the weight w,; in the direction of —3E/dw,,.

We now find an explicit formula for aE/ow,; for the arbitrary weight w, ;.
First, note that

oF d
Wy 0wy,

> (1 = y_in)?

Jj=1

d .
(t./ - y—an)29
Wy



88 Simple Neural Nets for Pattern Classification Chap. 2

since the weight w,, influences the error only at output unit Y¥,. Furthermore,
using the fact that

n
y-ing = 2 XiWig,

i=1
we obtain
oE ay_iny
= —2t; — y_in
Wiy (t, y-iny) Py
= =2ty — y~iny)x,.

Thus, the local error will be reduced most rapidly (for a given learning rate) by
adjusting the weights according to the delta rule,

Awsy = oty — y_ing)x,.

The preceding two derivations of the delta rule can be generalized to the
case where the training data are only samples from a larger data set, or probability
distribution. Minimizing the error for the training set will also minimize the ex-
pected value for the error of the underlying probability distribution. (See Widrow
& Lehr, 1990 or Hecht-Nielsen, 1990 for a further discussion of the matter.)

2.4.5 MADALINE

As mentioned earlier, a MADALINE consists of Many Apaptive Linear NEurons
arranged in a multilayer net. The examples given for the perceptron and the deri-
vation of the delta rule for several output units both indicate there is essentially
no change in the process of training if several ADALINE units are combined in a
single-layer net. In this section we will discuss a MADALINE with one hidden layer
(composed of two hidden ADALINE units) and one output ADALINE unit. Gener-
alizations to more hidden units, more output units, and more hidden layers, are
straightforward.

Architecture

A simple MADALINE net is illustrated in Figure 2.24. The outputs of the two hidden
ADALINES, z; and z,, are determined by signals from the same input units X; and
X>. As with the ApaLINEs discussed previously, each output signal is the result
of applying a threshold function to the unit’s net input. Thus, y is a nonlinear
function of the input vector (x;, x,). The use of the hidden units, Z, and Z,, give
the net computational capabilities not found in single layer nets, but also com-
plicate the training process. In the next section we consider two training algo-
rithms for a MADALINE with one hidden layer.
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b by
w1
V1
w2
wa1
4]
w2
by
d Figure 2.24 A MADALINE with two hid-
den ADALINES and one output ADALINE.
Algorithm

In the MRI algorithm (the original form of MADALINE training) [Widrow and Hoff,
1960], only the weights for the hidden ADALINEs are adjusted; the weights for the
output unit are fixed. The MRII algorithm [Widrow, Winter, & Baxter, 1987]
provides a method for adjusting all weights in the net.

We consider first the MRI algorithm; the weights v, and v, and the bias b,
that feed into the output unit Y are determined so that the response of unit Y is
1 if the signal it receives from either Z, or Z, (or both) is 1 and is —1 if both Z,
and Z, send a signal of — 1. In other words, the unit ¥ performs the logic function
ORr on the signals it receives from Z, and Z,. The weights into Y are

S |
Uy = 2
and
_1
v2 e 2 ’
with the bias
1
b3 =§

(see Example 2.19). The weights on the first hidden ADALINE (w;; and w,;) and

the weights on the second hidden ADALINE (w2 and wa,) are adjusted according
to the algorithm.
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Training Algorithm for MapaLINE (MRI). The activation function for units
Z,Z;,and Yis

_ 1 if x = 0;
fx) = {—1 if x < 0,

Step 0. Initialize weights:
Weights v, and v, and the bias b; are set as described;
small random values are usually used for ADALINE weights.

Set the learning rate a as in the ADALINE training algorithm (a small
value),

Step 1. While stopping condition is false, do Steps 2-8.
Step 2. For each bipolar training pair, s:t, do Steps 3-7.

Step 3. Set activations of input units:
Xi = §;.
Step 4. Compute net input to each - hidden ADALINE
unit;

ziny = by + xywi + xaway,
z2-in, = b, + X1Wi2 + XaoWas.

Step 5. Determine output of each hidden ADALINE
Unit:

z1 = f(zny),
22 = f(z-iny).

Step 6. Determine output of net:
y-in = b3 + z1vy + Zava;
¥ = f(y-in).

Step 7. - Determine error and update weights:
If t = y, no weight updates are performed.
Otherwise:
If t = 1, then update weights on Z,,
the unit whose net input is closest to 0,

b,(new) = b,(old) + a(l — z_iny),
wis(new) = w;;(old) + a(l — z_in,)x;;

If t = —1, then update weights on all units
Z, that have positive net input,

bi(new) = bi(old)+ a(—1 — z_iny),

w,-k(new) = W,'k(Old) + (l(_l - z_ink)x,-.
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Step 8. Test stopping condition.
If weight changes have stopped (or reached an acceptable
level), or if a specified maximum number of weight update
iterations (Step 2) have been performed, then stop; other-
wise continue.

Step 7 is motivated by the desire to (1) update the weights only if an error
occurred and (2) update the weights in such a way that it is more likely for the
net to produce the desired response.

If t = 1 and error has occurred, it means that all Z units had value —1 and
at least one Z unit needs to have a value of + 1. Therefore, we take Z, to be the
Z unit whose net input is closest to 0 and adjust its weights (using ADALINE training
with a target value of +1):

b;(new) = b,(old) + a(l — z_iny),
wis(new) = w;;(old) + a(l — z_iny)x;.

If t = —1 and error has occurred, it means that at least one Z unit had value
+1 and all Z units must have value — 1. Therefore, we adjust the weights on all

of the Z units with positive net input, (using ADALINE training with a target of
-1): ,

bi(new) = bi(old) + a(~1 — z_iny),
wi(new) = wi(old) + a(—1 — z_ingx;.

MADALINES can also be formed with the weights on the output unit set to
perform some other logic function such as AND or, if there are more than two
hidden units, the ‘“‘majority rule’’ function. The weight update rules would be
modified to reflect the logic function being used for the output unit [Widrow &
Lehr, 1990].

A more récent MADALINE training rule, called MRII [Widrow, Winter, &
Baxter, 1987], allows training for weights in all layers of the net. As in earlier
MADALINE training, the aim is to cause the least disturbance to the net at any step
of the learning process, in order to cause as little ‘‘unlearning’’ of patterns for
which the net had been trained previously. This is sometimes called the ‘‘don’t
rock the boat’’ principle. Several output units may be used; the total error for
any input pattern (used in Step 7b) is the sum of the squares of the errors at each
output unit.

Training Algorithm for MapALINE (MRII).
Step 0. Initialize weights:
Set the learning rate a.
Step 1. While stopping condition is false, do Steps 2-8.
Step 2. For each bipolar training pair, s:t, do Steps 3-7.
Step 3-6. Compute output of net as in the MRI algorithm.
Step 7. Determine error and update weights if necessary:
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If t # y, do Steps 7a—b for each hidden unit whose net
input is sufficiently close to 0 (say, between —.25 and
.25). Start with the unit whose net input is closest to 0,
then for the next closest, etc.
Step 7a. Change the unit’s ouput
(from +1to —1, or vice versa).
Step 7b. Recompute the response of the net.
If the error is reduced:
adjust the weights on this unit
(use its newly assigned output value
as target and apply the Delta Rule).
Step 8. Test stopping condition.
If weight changes have stopped (or reached an accept-
able level), or if a specified maximum number of weight
update iterations (Step 2) have been performed, then
stop; otherwise continue.

A further modification is the possibility of attempting to modify pairs of units

at the first layer after all of the individual modifications have been attempted.
Similarly adaptation could then be attempted for triplets of units.

Application

Example 2.20 Training a MapbaLine for the Xor function

This example illustrates the use of the MRI algorithm to train a MADALINE to solve
the Xor problem. Only the computations for the first weight updates are shown.
The training patterns are:

X4 Xz t
1 1 -1
1 -1 1
-1 1 1
-1 —1 -1

Step 0. :
The weights into Z; and into Z, are small random values; the weights into Y are
those found in Example 2.19. The learning rate, a, is .5.

Weights into Z, Weights into 2, Weights into Y .
Wi W21 b, Wiz W22 by Uy U2 bs
.05 2 3 .1 2 15 S 5 5

Step 1. Begin training.
Step 2. For the first training pair, (1, 1): —1
Step 3. x; =1, x; =1
Step 4. z-in, 3 + .05+ 2
zin, = 15 + .1 + .2

55,
45.

o
i
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Step 5. z =1,

z2 = 1.
Step 6. y-in=.5+ .5+ .5;

y = 1.
Step 7. t—-y=—-1-1= —2%0,soanerroroccurred.
Since + = —1, and both Z units have positive net input,

update the weights on unit Z, as follows:

bi(new) = b (old) + a(—1 — z_iny)

3+ (5)(-1.55)
-.475

wi(new) = wi(old) + a(—1 — z_in)x,
=.05+ (.5)(—1.55)
= —.72§

wai(new) = wa(old) + a(—1 — z.in x>

2+ (S5)—1.55)
-.575

update the weights on unit Z, as follows:

ba(new) = by(old) + a(—1 — z_in,)
= .15 + (5)(—1.45)
= —.575
wia(new) = wis(old) + a(—1 — z_iny)x,
=.1 + (5)(—1.495)
= —.625
wa(new) = wylold) + a(=1 = z_ins)x,

2+ (5)(—1.45)
—-.525

After four epochs of training, the final weights are found to be:

wn = -0.73 Wi = 1.27
Wo = 1.53 Wo = —-1.33
b, = —-0.99 b, = —1.09

Example 2.21 Geometric interpretation of MapaLINE weights

The positive response region for the Madaline trained in the previous example is the
union of the regions where each of the hidden units have a positive response. The
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decision boundary for each hidden unit can be calculated as described in Section
2.1.3.
For hidden unit Z,, the boundary line is

= 0.48 x; + 0.65

For hidden unit Z,, the boundary line is

_ Wiz b,
X2 = — —x; — —
W2 L7
_ L2710
T1nt T 133
=096 x, — 0.82

These regions are shown in Figures 2.25 and 2.26. The response diagram for the
MapaLiNE is illustrated in Figure 2.27.

= - Figure2.25 Positive response region for
Z,.
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X2

Figure 2.26 Positive response region for
Z,.

Figure 2.27 Positive response region for MabALINE for Xor function.
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Discussion

The construction of sample multilayer nets may provide insights into the appro-
priate choice of parameters for multilayer nets in general, such as those trained
using backpropagation (discussed in Chapter 6). For example, if the input patterns
fall into regions that can be bounded (approximately) by a number of lines or
planes, then the number of hidden units can be estimated.

It is possible to construct a net with 2p hidden units (in a single layer) that
will learn p bipolar input training patterns (each with an associated bipolar target
value) perfectly. Of course, that is not the primary (or at least not the exclusive)
goal of neural nets; generalization is also important and will not be particularly
good with so many hidden units. In addition, the training time and the number
of interconnections will be unnecessarily large. However, 2p certainly gives an
upper bound on the number of hidden units we might consider using.

For input that is to be assigned to different categories (the kind of input we
have been considering in this chapter), we see that the regions which each neuron
separates are bounded by straight lines. Closed regions (convex polygons) can be
bounded by taking the intersection of several half-planes (bounded by the sepa-
rating lines described earlier). Thus a net with one hidden layer (with p units) can
learn a response region bounded by p straight lines. If responses in the same
category occur in more than one disjoint region of the input space, an additional
hidden layer to combine these regions will make training easier.

2.5 SUGGESTIONS FOR FURTHER STUDY
2.5.1 Readings
Hebb rule
The description of the original form of the Hebb rule is found in

Hess, D. O. (1949). The Organization of Behavior. New York: John Wiley & Sons. In-
troduction and Chapter 4 reprinted in Anderson and Rosenfeld (1988), pp. 45-56.

Perceptrons

The description of the perceptron, as presented in this chapter, is based on

Brock, H. D. (1962). ““The Perceptron: A Model for Brain Functioning, 1.”” Reviews of

Modern Physics, 34:123-135. Reprinted in Anderson and Rosenfeld (1988), pp. 138-
150.

There are many types of perceptrons; for more complete coverage, see:



