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5.11 *Support Vector Machines

We have seen how to train linear machines with margins. Support Vector Machines
(SVMs) are motivated by many of the same considerations, but rely on preprocessing
the data to represent patterns in a high dimension — typically much higher than the
original feature space. With an appropriate nonlinear mapping ¢() to a sufficiently
high dimension, data from two categories can always be separated by a hyperplane
(Problem 27). Here we assume each pattern xj has been transformed to y; = @(xg);
we return to the choice of ¢() below. For each of the n patterns, k = 1,2, ...,n, we let
zr = +1, according to whether pattern & is in wy or ws. A linear discriminant in an
augmented y space is

g(y) =a'y, (104)

where both the weight vector and the transformed pattern vector are augmented (by
ap = wg and yo = 1, respectively). Thus a separating hyperplane insures

much as was shown in Fig. 5.8.

In Sect. 7?7, the margin was any positive distance from the decision hyperplane.
The goal in training a Support Vector Machine is to find the separating hyperplane
with the largest margin; we expect that the larger the margin, the better generalization
of the classifier. As illustrated in Fig. 5.2 the distance from any hyperplane to a
(transformed) pattern y is |g(y)|/||al|, and assuming that a positive margin b exists,
Eq. 105 implies
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the goal is to find the weight vector a that maximizes b. Of course, the solution
vector can be scaled arbitrarily and still preserve the hyperplane, and thus to insure
uniqueness we impose the constraint b ||a|| = 1; that is, we demand the solution to
Egs. 104 & 105 also minimize ||a||?.

The support vectors are the (transformed) training patterns for which Eq. 105 rep-
resents an equality — that is, the support vectors are (equally) close to the hyperplane
(Fig. 5.19). The support vectors are the training samples that define the optimal sepa-
rating hyperplane and are the most difficult patterns to classify. Informally speaking,
they are the patterns most informative for the classification task.

If Ny denotes the total number of support vectors, then for n training patterns
the expected value of the generalization error rate is bounded, according to

En|Ns)

. (107)

Enlerror rate] <
where the expectation is over all training sets of size n drawn from the (stationary)
distributions describing the categories. This bound is independent of the dimension-
ality of the space of transformed vectors, determined by ¢(). We will return to this
equation in Chap. 7?7, but for now we can understand this informally by means of
the leave one out bound. Suppose we have n points in the training set, and train a
Support Vector Machine on n — 1 of them, and test on the single remaining point.
If that remaining point happens to be a support vector for the full n sample case,
then there will be an error; otherwise, there will not. Note that if we can find a
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transformation ¢() that well separates the data — so the expected number of support
vectors is small — then Eq. 107 shows that the expected error rate will be lower.

Y2

Y1

Figure 5.19: Training a Support Vector Machine consists of finding the optimal hy-
perplane, i.e., the one with the maximum distance from the nearest training patterns.
The support vectors are those (nearest) patterns, a distance b from the hyperplane.
The three support vectors are shown in solid dots.

5.11.1 SVM training

‘We now turn to the problem of training an SVM. The first step is, of course, to choose
the nonlinear ¢-functions that map the input to a higher dimensional space. Often
this choice will be informed by the designer’s knowledge of the problem domain. In
the absense of such information, one might choose to use polynomials, Gaussians or
yet other basis functions. The dimensionality of the mapped space can be arbitrarily
high (though in practice it may be limited by computational resources).

We begin by recasting the problem of minimizing the magnitude of the weight
vector constrained by the separation into an unconstrained problem by the method
of Lagrange undetermined multipliers. Thus from Eq. 106 and our goal of minimizing
[lal], we construct the functional

n

1
L(a,a) = §||a||2 - Zak[zkatyk —1]. (108)
k=1

and seek to minimize L() with respect to the weight vector a, and maximize it with
respect to the undetermined multipliers « > 0. The last term in Eq. 108 expresses
the goal of classifying the points correctly. It can be shown using the so-called Kuhn-
Tucker construction (Problem 30) (also associated with Karush whose 1939 thesis
addressed the same problem) that this optimization can be reformulated as maximiz-
ing

1 n
L(a) =Y ai = 5 D 0ka;2k2Y ¥k, (109)
k=1 k.j

subject to the constraints
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n
S s =0 o >0k=1,.,n, (110)
k=1

given the training data. While these equations can be solved using quadratic pro-
gramming, a number of alternate schemes have been devised (cf. Bibliography).

Example 2: SVM for the XOR problem I

The exclusive-OR is the simplest problem that cannot be solved using a linear
discriminant operating directly on the features. The points k = 1,3 at x = (1,1)*
and (—1,—1)" are in category w; (red in the figure), while & = 2,4 at x = (1,-1)*
and (—1,1)" are in wy (black in the figure). Following the approach of Support Vector
Machines, we preprocess the features to map them to a higher dimension space where
they can be linearly separated. While many @-functions could be used, here we use
the simplest expansion up to second order: 1, v2z1, V2xa, V21122, 22 and 3, where
the v/2 is convenient for normalization.

We seek to maximize Eq. 109,

4 1 n

P ) vt
Z()k B) zaka]zkzjyjyk
k=1 k.,j

subject to the constraints (Eq. 110)

a1 —ast+azg—ay =0
0<ag k=1,23,4.

It is clear from the symmetry of the problem that a; = ag and that s = vy at the
solution. While we could use iterative gradient descent as described in Sect. 5.9, for
this small problem we can use analytic techniques instead. The solution is aj, = 1/8,
for k =1,2,3,4, and from the last term in Eq. 108 this implies that all four training
patterns are support vectors — an unusual case due to the highly symmetric nature
of the XOR problem.

The final discriminant function is g(x) = g(x1,x2) = z1x2, and the decision
hyperplane is defined by ¢ = 0, which properly classifies all training patterns. The
margin is easily computed from the solution ||a|| and is found to be b = 1/||a|| = V2.
The figure at the right shows the margin projected into two dimensions of the five
dimensional transformed space. Problem 28 asks you to consider this margin as viewed
in other two-dimensional projected sub-spaces.

An important benefit of the Support Vector Machine approach is that the com-
plexity of the resulting classifier is characterized by the number of support vectors —
independent of the dimensionality of the transformed space. This
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The XOR problem in the original x1 — x5 feature space is shown at the left; the two
red patterns are in category w; and the two black ones in ws. These four training
patterns x are mapped to a six-dimensional space by 1, v/2z1, v2xa, v/2x 129, 22 and
x3. In this space, the optimal hyperplane is found to be g(x1,z2) = 179 = 0 and the
margin is b = v/2. A two-dimensional projection of this space is shown at the right.
The hyperplanes through the support vectors are v/2z 25 = +1, and correspond to
the hyperbolas z1x2 = +1 in the original feature space, as shown.

5.12 Multicategory Generalizations

5.12.1 Kesler’s Construction

There is no uniform way to extend all of the two-category procedures we have discussed
to the multicategory case. In Sect. 5.2.2 we defined a multicategory classifier called a
linear machine which classifies a pattern by computing ¢ linear discriminant functions

gi(x) =w'x+wy i=1,..c,

and assigning x to the category corresponding to the largest discriminant. This is
a natural generalization for the multiclass case, particularly in view of the results
of Chap. 7?7 for the multivariate normal problem. It can be extended simply to
generalized linear discriminant functions by letting y(x) be a d-dimensional vector of
functions of x, and by writing

gi(x)=aly i=1,..,c (111)

where again x is assigned to w; if g;(x) > g;(x) for all j # 1.

The generalization of our procedures from a two-category linear classifier to a
multicategory linear machine is simplest in the linearly-separable case. Suppose that
we have a set of labelled samples y1,yo2, ..., ¥,, with ny in the subset ); labelled w1,
ng in the subset )s labelled wo,..., and n, in the subset ). labelled w.. We say that
this set is linearly separable if there exists a linear machine that classifies all of them
correctly. That is, if these samples are linearly separable, then there exists a set of
weight vectors ay, ..., a. such that if y, € V;, then

ajyy > alyk (112)
for all j # 4.
One of the pleasant things about this definition is that it is possible to manipulate
these inequalities and reduce the multicategory problem to the two-category case.
Suppose for the moment that y € )y, so that Eq. 112 becomes
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alyy —alyr >0, j=2..c (113)

This set of ¢ — 1 inequalities can be thought of as requiring that the cd-dimensional
weight vector

al
az

Ac

correctly classifies all ¢ — 1 of the cd-dimensional sample sets

y y y
-y 0 0
0 -y

M2 = N3 = s y o Mie =
0 0 -y

In other words, each 7n;; corresponds to “normalizing” the patterns in w; and w;.
More generally, if y € ;, we construct (¢ — 1)ed-dimensional training samples nij by
partitioning 7;; into cd-dimensional subvectors, with the ¢th subvector being y, the
jth being —y, and all others being zero. Clearly, if dtnij > 0 for j # i, then the
linear machine corresponding to the components of & classifies y correctly.

This so-called Kesler construction multiplies the dimensionality of the data by ¢
and the number of samples by ¢ — 1, which does not make its direct use attractive.
Its importance resides in the fact that it allows us to convert many multicategory
error-correction procedures to two-category procedures for the purpose of obtaining
a convergence proof.

5.12.2 Convergence of the Fixed-Increment Rule

We now use use Kesler’s construction to prove convergence for a generalization of the
fixed-increment rule for a linear machine. Suppose that we have a set of n linearly-
separable samples y1,...,¥,, and we use them to form an infinite sequence in which
every sample appears infinitely often. Let Lj denote the linear machine whose weight
vectors are aj(k), ...,a.(k). Starting with an arbitrary initial linear machine Li, we
want to use the sequence of samples to construct a sequence of linear machines that
converges to a solution machine, one that classifies all of the samples correctly. We
shall propose an error-correction rule in which weight changes are made if and only
if the present linear machine misclassifies a sample. Let y* denote the kth sample
requiring correction, and suppose that y* € )V;. Since y* requires correction, there
must be at least one j # i for which

al (k)y* < a;(k)'y". (114)

Then the fixed-increment rule for correcting Ly, is
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ai(k+1) = a(k)+y"
aj(k+1) = a;(k)—y" (115)
ak+1) = alk), l#4 andl#j.

That is, the weight vector for the desired category is incremented by the pattern, the
weight vector for the incorrectly chosen category is decremented, and all other weights
are left unchanged (Problem 33, Computer exercise 12).

We shall now show that this rule must lead to a solution machine after a finite
number of corrections. The proof is simple. For each linear machine L there corre-
sponds a weight vector

al(k)
Q= :

ac&k)

For each sample y € )); there are ¢ — 1 samples 77;; formed as described in Sect. ?7.
In particular, corresponding to the vector y* satisfying Eq. 114 there is a vector

k

y P

k
Nij =

ok

y — j
satisfying
tk)ynk <o
o (k)ni; <

Furthermore, the fixed-increment rule for correcting Ly, is the fixed-increment rule for
correcting a(k), viz.,

alk+1)=ak)+ nfj.

Thus, we have obtained a complete correspondence between the multicategory case
and the two-category case, in which the multicategory procedure produces a sequence
of samples n*,n?,...,n*, ... and a sequence of weight vectors a1, a, ..., ay, ... By our
results for the the two-cateogry case, this latter sequence can not be infinite, but must
terminate in a solution vector. Hence, the sequence Ly, Ls, ..., L, ... must terminate
in a solution machine after a finite number of corrections.

This use of Kesler’s construction to establish equivalences between multicategory
and two-category procedures is a powerful theoretical tool. It can be used to extend
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all of our results for the Perceptron and relaxation procedures to the multicategory
case, and applies as well to the error-correction rules for the method of potential
functions (Problem ??). Unfortunately, it is not as directly useful in generalizing the
MSE or the linear programming approaches.

5.12.3 Generalizations for MSE Procedures

Perhaps the simplest way to obtain a natural generalization of the MSE procedures
to the multiclass case is to consider the problem as a set of ¢ two-class problems. The
ith problem is to obtain a weight vector a; that is minimum-squared-error solution to
the equations

aly 1forally € );
aly = —1foraly¢ ).

In view of the results of Sect. 5.8.3 the number of samples is very large we will obtain
a minimum mean-squared-error approximation to the Bayes discriminant function

P(w;|x) — P(not w;|x) = 2P(w;|x) — 1.

This observation has two immediate consequences. First, it suggests a modification
in which we seek a weight vector a; that is a minimum-squared-error solution to the
equations

t
ay = 1 forally € );
aly = 0 forally ¢ V; (116)

so that a'y will be a minimum mean-squared-error approximation to P(w;|x). Second,
it justifies the use of the resulting discriminant functions in a linear machine, in which
we assign y to w; if ajy > aly for all j # i.

The pseudoinverse solution to the multiclass MSE problem can be written in a
form analogous to the form for the two-class case. Let Y be the n—by—cf matrix of
training samples, which we assume to be partitioned as

Y,
Y,
Yy=1| .|, (117)

with the samples labelled w; comprising the rows of Y;. Similarly, let A be the ci—by—c
matrix of weight vectors

A=Ja; a; - a, (118)
and let B be the n-by-c matrix
B
B,
B= , (119)
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where all of the elements of B; are zero except for those in the ith column, which
are unity. Then the trace of the “squared” error matrix (YA — B)! x (YA — B) is
minimized by the solution*

A =Y'B, (120)

where, as usual, YT is the pseudoinverse of Y.

This result can be generalized in a theoretically interesting fashion. Let \;; be
the loss incurred for deciding w; when the true state of nature is w;, and let the jth
submatrix of B be given by

/\1j /\2]. Ce )\cj T
/\1j /\2]. )\cj -

Bj = — . . u% ] = 1,...,C. (121)
/\1]‘ )\2‘7' s )\cj J/

Then, as the number of samples approaches infinity, the solution A = Y'B yields dis-
criminant functions aly which provide a minimum-mean-square-error approximation
to the Bayes discriminant function

Joi = — Z Aij P(wilx). (122)

j=1

The proof of this is a direct extension of the proof given in Sect. 5.8.3 (Problem 34).

Summary

This chapter considers discriminant functions that are a linear function of a set of
parameters, generally called weights. In all two-category cases, such discriminants
lead to hyperplane decision boundaries, either in the feature space itself, or in a
space where the features have been mapped by a nonlinear function (general linear
discriminants).

In broad overview, techniques such as the Perceptron algorithm adjust the param-
eters to increase the inner product with patterns in category w; and decrease the inner
product with those in wo. A very general approach is to form some criterion function
and perform gradient descent. Different creiterion functions have different strengths
and weaknesses related to computation and convergence, none uniformly dominates
the others. One can use linear algebra to solve for the weights (parameters) directly,
by means of pseudoinverse matrixes for small problems.

In Support Vector Machines, the input is mapped by a nonlinear function to a high-
dimensional space, and the optimal hyperplane found, the one that has the largest
margin. The support vectors are those (transformed) patterns that determine the
margin; they are informally the hardest patterns to classify, and the most informative
ones for designing the classifier. An upper bound on expected error rate of the classifier
depends linearly upon the expected number of support vectors.

For multi-category problems, the linear machines create decision boundaries con-
sisting of sections of such hyperplanes. One can prove convergence of multi-category

* If we let b; denote the ith column of B, the trace of (YA — B)!(YA — B) is equal to the sum
of the squared lengths of the error vectors Ya; — b;. The solution A = Y B not only minimizes
this sum, but it also minimizes each term in the sum.
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algorithms by first converting them to two-category algorithms and using the two-
category proofs. The simplex algorithm finds the optimimun of a linear function
subject to (inequality) constraints, and can be used for training linear classifiers.

Linear discriminants, while useful, are not sufficiently general for arbitrary chal-
lenging pattern recognition problems (such as those involving multi-modal densities)
unless an appropriate nonlinear mapping (¢ function) can be found. In this chapter
we have not considered any principled approaches to choosing such functions, but
turn to that topic in Chap. 77.

Bibliographical and Historical Remarks

Because linear discriminant functions are so amenable to analysis, far more papers
have been written about them than the subject deserves. Historically, all of this work
begins with the classic paper by Ronald A. Fisher [4]. The application of linear dis-
criminant function to pattern classification was well described in [7], which posed the
problem of optimal (minimum-risk) linear discriminant, and proposed plausible gra-
dient descient procedures to determine a solution from samples. Unfortunately, little
can be said about such procedures without knowing the underlying distributions, and
even then the situation is analytically complex. The design of multicategory classifiers
using two-category procedures stems from [12]. Minsky and Papert’s Perceptrons
[11] was influential in pointing out the weaknesses of linear classifiers — weaknesses
that were overcome by the methods we shall study in Chap. ??. The Winnow algo-
rithms [8] in the error-free case and [9, 6] and subsequent work in the general case
have been useful in the computational learning community, as they allow one to derive
convergence bounds.

While this work was statistically oriented, many of the pattern recognition papers
that appeared in the late 1950s and early 1960s adopted other viewpoints. One
viewpoint was that of neural networks, in which individual neurons were modelled as
threshold clements, two-category linear machines — work that had its origins in the
famous paper by McCulloch and Pitts [10].

As linear machines have been applied to larger and larger data sets in higher and
higher dimensions, the computational burden of linear programming [2] has made this
approach less popular. Stochastic approximations, e.g, [15],

An early paper on the key ideas in Support Vector Machines is [1]. A more
extensive treatment, including complexity control, can be found in [14] — material
we shall visit in Chap. ??7. A readable presentation of the method is [3], which provided
the inspiration behind our Example 2. The Kuhn-Tucker construction, used in the
SVM training method described in the text and explored in Problem 30, is from [5]
and used in [13]. The fundamental result is that exactly one of the following three
cases holds. 1) The original (primal) conditions have an optimal solution; in that case
the dual cases do too, and their objective values are equal, or 2) the primal conditions
are infeasible; in that case the dual is either unbounded or itself infeasible, or 3) the
primal conditions are unbounded; in that case the dual is infeasible.

Problems

P Section 5.2
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1. Consider a linear machine with discriminant functions g;(x) = wix + wjo, i =
1,...,c. Show that the decision regions are convex by showing that if x; € R; and
Xg € R; then Axg + (1 = N)x2 € R; if 0 < A < 1.

2. Figure 5.3 illustrates the two most popular methods for designing a c-category
classifier from linear boundary segments. Another method is to save the full (;)
linear w;/w; boundaries, and classify any point by taking a vote based on all these
boundaries. Prove whether the resulting decision regions must be convex. If they need
not be convex, construct a non-pathological example yielding at least one non-convex
decision region.

3. Consider the hyperplane used for discriminant functions.

(a) Show that the distance from the hyperplane g(x) = wix + wo = 0 to the point
Xq 15 |g(%4)|/||w|| by minimizing ||x — x,||? subject to the constraint g(x) = 0.

(b) Show that the projection of x, onto the hyperplane is given by

9(Xa)
=X, — w.
PO w?

4. Consider the three-category linear machine with discriminant functions g;(x) =
wix + wj, i =1,2,3.

(a) For the special case where x is two-dimensional and the threshold weights w;
are zero, sketch the weight vectors with their tails at the origin, the three lines
joining their heads, and the decision boundaries.

(b) How does this sketch change when a constant vector ¢ is added to each of the
three weight vectors?

5. In the multicategory case, a set of samples is said to be linearly separable if there
exists a linear machine that can classify them all correctly. If any samples labelled
w; can be separated from all others by a single hyperplane, we shall say the samples

TOTAL are totally linearly separable. Show that totally linearly separable samples must be

LINEAR linearly separable, but that the converse need not be true. (Hint: For the converse,

SEPARABILITY consider a case in which a linear machine like the one in Problem 4 separates the
samples.)

PAIRWISE 6. A set of samples is said to be pairwise linearly separable if there exist c¢(c —1)/2

LINEAR hyperplanes H;; such that H;; separates samples labelled w; from samples w;. Show

SEPARABILITY that a pairwise-linearly-separable set of patterns may not be linearly separable.

7. Let {y1,...,yn} be a finite set of linearly separable training samples, and let a be
called a solution vector if aly; > 0 for all . Show that the minimum-length solution
vector is unique. (Hint: Counsider the effect of averaging two solution vectors.)

CONVEX 8. The convex hull of a set of vectors x;,7 = 1,...,n is the set of all vectors of the
HULL form

n
X = g X,
i=1

where the coefficients «; are nonnegative and sum to one. Given two sets of vectors,
show that either they are linearly separable or their convex hulls intersect. (Hint:
Suppose that both statements are true, and consider the classification of a point in
the intersection of the convex hulls.)



