
ChatGPT

Explain the following with numerical in detail for each topics : The Effect of Class Imbalance: Model 
Tuning - Alternate Cutoffs - Adjusting Prior Probabilities - Unequal Case Weights

Class imbalance occurs when the distribution of target classes in a dataset is highly skewed, which can
negatively affect the performance of machine learning models, particularly classification models. To
mitigate this issue, several techniques can be applied, including model tuning, alternate cutoffs,
adjusting prior probabilities, and unequal case weights. Below, I will explain each technique with
numerical examples.

1. Model Tuning

Model tuning involves adjusting hyperparameters or modifying the loss function to account for the
imbalance.

Example

Consider a binary classification problem where:

Class 0 (Negative cases): 95% of the dataset (950 instances).

Class 1 (Positive cases - Minority Class): 5% of the dataset (50 instances).

If we train a logistic regression model without adjustments, it might predict everything as Class 0 to
achieve 95% accuracy, but this would be misleading.

Solution: Hyperparameter Tuning

One way to address this issue is by tuning hyperparameters such as class weights in logistic regression
or modifying the loss function in deep learning models.

In Scikit-learn, we can apply `class_weight='balanced'` in logistic regression:

python

from sklearn.linear_model import LogisticRegression

model = LogisticRegression(class_weight='balanced')

The `class_weight='balanced'` setting assigns higher weight to the minority class (Class 1) by
calculating:

For Class 1:

Class Weight = ​

2 × Class Frequency
Total Samples

1000Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 1/4

The Effect of Class Imbalance -->>
Model Tuning - Alternate Cutoffs -
Adjusting Prior Probabilities -
Unequal Case Weights

@S S Roy



For Class 0:

This forces the model to give more importance to Class 1, improving recall for the minority class.

2. Alternate Cutoffs

The decision threshold (default = 0.5 in logistic regression) can be adjusted to favor the minority class.

Example

Assume we train a model, and it outputs the following probabilities for five test cases:

Instance True Class Model Output Probability (Class 1)

A 0 0.3

B 1 0.4

C 1 0.6

D 0 0.7

E 1 0.8

If we use a default threshold of 0.5, then:

Predicted Class (0.5 threshold): `[0, 0, 1, 1, 1]`

Accuracy: 60%

Recall for Class 1: 2/3 = 66.7%

Lowering the Threshold to 0.4

Predicted Class (0.4 threshold): `[0, 1, 1, 1, 1]`

Accuracy: 80%

Recall for Class 1: 100%

By lowering the threshold, we increase sensitivity towards the minority class at the cost of more false
positives.

Implementation in Python:

python

from sklearn.metrics import classification_report

y_pred = (model.predict_proba(X_test)[:,1] >= 0.4).astype(int)

print(classification_report(y_test, y_pred))

3. Adjusting Prior Probabilities

Weight = ​ =
2 × 50
1000

10

Weight = ​ =
2 × 950

1000
0.526

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 2/4



When training models like Naive Bayes, we can explicitly set class priors to reflect the importance of
each class.

Example

Consider a dataset where:

Class 0: 95% (950 instances)

Class 1: 5% (50 instances)

Naive Bayes assumes equal priors:

However, we can adjust them based on real class distribution:

This adjustment increases the likelihood of Class 1 being chosen.

Implementation in Python (Using Naive Bayes in Scikit-learn):

python

from sklearn.naive_bayes import GaussianNB

model = GaussianNB(priors=[0.95, 0.05])

4. Unequal Case Weights

Assign different importance to misclassification errors using weighted loss functions.

Example

Suppose we use a cost-sensitive approach in a confusion matrix:

Actual / Predicted Predicted Class 0 Predicted Class 1

Actual Class 0 TN = 900 FP = 50

Actual Class 1 FN = 30 TP = 20

If False Negatives (FN) are costlier than False Positives (FP) (e.g., in medical diagnosis), we assign
different penalties:

Cost of FN (missing a positive case) = 5

Cost of FP (wrongly classifying negative as positive) = 1

Total misclassification cost:

To minimize this cost, models can be trained with weighted loss functions like:

P (C ​) =0 P (C ​) =1 0.5

P (C ​) =0 0.95, P (C ​) =1 0.05

Cost = (30 × 5) + (50 × 1) = 150 + 50 = 200

Weighted Loss = w ​ ⋅∑ i Loss ​i

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 3/4



Implementation in Python (Random Forest with Class Weights):

python

from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(class_weight={0: 1, 1: 5})

This forces the model to prioritize correctly classifying Class 1, improving recall for the minority class.

Conclusion

Technique Effect

Model Tuning Adjusts class weights or modifies loss function

Alternate Cutoffs Adjusts decision threshold to favor minority class

Adjusting Prior Probabilities Alters priors to reflect real-world distributions

Unequal Case Weights Assigns higher misclassification cost to the minority class

Each technique helps mitigate class imbalance, and a combination of these approaches is often most
effective in real-world scenarios.

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 4/4

@ S S Roy. 23rd March,2025




