
Make a indepth tutorial on Randomized algorithms for hiring problem. Provide numerical and
detail explanation.

Here's an in-depth tutorial on Randomized Algorithms for the Hiring Problem, covering the problem
statement, the naive approach, and the randomized algorithm with numerical examples.

Randomized Algorithms for the Hiring Problem

1. Problem Statement

The Hiring Problem models the process of hiring the best candidate for a job. The problem assumes
that candidates arrive sequentially, and we must decide immediately whether to hire or reject a
candidate, without recalling past candidates.

2. Naïve Deterministic Approach

In a deterministic setting, the best strategy is to hire the first best candidate encountered. However,
without knowledge of future candidates, we might hire a suboptimal choice early on. A deterministic
strategy does not work well if better candidates arrive later.

3. Randomized Algorithm for the Hiring Problem

A randomized approach improves the probability of selecting the best candidate. The idea is to divide
the selection process into two phases:

Phase 1 (Learning Phase): Observe the first `k` candidates but do not hire anyone.

Phase 2 (Selection Phase): Hire the first candidate who is better than all the candidates observed
in Phase 1.

This method ensures a better chance of selecting the best candidate.

4. The Randomized Algorithm

Algorithm Steps

1. Choose a random integer `k` (typically `k = n/e` where `e ≈ 2.718`).

2. Observe the first `k` candidates but do not hire.

3. Select the first candidate that is better than all observed candidates.

4. If no such candidate is found, stick with the last candidate.

5. Numerical Example

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 1/7

@S S Roy

Problem Setup

Suppose there are 7 candidates, each with a unique ranking (1 = best, 7 = worst):

Candidate Rank (1 = best)

A 3

B 6

C 1

D 5

E 2

F 7

G 4

We assume candidates arrive in the order `A → B → C → D → E → F → G`.

Step-by-Step Execution

Step 1: Choose `k`

For `n = 7`, an optimal choice is `k = ⌊7/e⌋ = ⌊7/2.718⌋ ≈ 2`.
So, we observe the first 2 candidates (`A` and `B`) but do not hire anyone.

Step 2: Observe First `k` Candidates (Learning Phase)

Candidate A arrives (Rank 3). Do not hire.

Candidate B arrives (Rank 6). Do not hire.

At the end of this phase, the best candidate seen so far is A (Rank 3).

Step 3: Selection Phase

Candidate C arrives (Rank 1). Since 1 < 3 (best seen so far), hire C.

Stop hiring, even if better candidates arrive later.

Thus, Candidate C is selected, who is actually the best candidate!

6. Analysis of Probability of Success

Success Probability Calculation

To succeed, we must select the absolute best candidate. The probability of this happening follows the
Secretary Problem:

That means the randomized approach selects the best candidate about 37% of the time, which is
significantly better than a naive deterministic method.

P (Success) ≈ ​ ≈
e

1
0.37

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 2/7

7. Advantages of Randomized Hiring

Higher success rate (37%) compared to naive strategies.

Works without prior knowledge of candidate distribution.

Efficient since decisions are made in O(n) time.

8. Disadvantages

Still not guaranteed to pick the best candidate.

Requires randomness, which might not be practical in some real-world hiring processes.

9. Conclusion

Randomized algorithms provide an elegant solution to the hiring problem, significantly increasing the
probability of selecting the best candidate compared to naive approaches. By using a learning phase
followed by an optimal stopping rule, we can improve hiring outcomes.

Would you like further explanations or variations of this algorithm? 🚀

Provide another lenghty Numerical explain better

Here's a detailed, step-by-step numerical explanation of the Randomized Hiring Algorithm,
including multiple cases, probability analysis, and intuition.

Randomized Algorithm for the Hiring Problem: Detailed
Numerical Explanation

1. Problem Statement

The Hiring Problem models a scenario where we want to hire the best candidate for a job. However, we
must make hiring decisions immediately without the ability to recall previously rejected candidates.

We assume:

There are n candidates.

Each candidate has a unique rank (1 = best, n = worst).

Candidates arrive in a random order.

Once a candidate is rejected, they cannot be recalled.

2. The Randomized Algorithm

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 3/7

Example-2

The randomized selection strategy follows these steps:

1. Choose a threshold `k`, usually `k = n/e` (where `e ≈ 2.718`).

2. Observe the first `k` candidates without hiring.

3. Hire the first candidate who is better than all observed candidates.

4. If no such candidate appears, hire the last one.

Why Does This Work?

The first `k` candidates serve as a benchmark (learning phase).

The remaining candidates have a chance to be compared against an established standard.

This approach increases the probability of hiring the best candidate.

3. Step-by-Step Numerical Example

Let's consider 7 candidates arriving in random order. Their true rankings are:

Candidate Rank (1 = best)

A 4

B 2

C 6

D 1

E 5

F 3

G 7

Candidates arrive in this random order:
`C → A → B → G → F → E → D`

Step 1: Compute `k`

For `n = 7`, the optimal threshold is:

This means we observe the first 2 candidates without hiring.

Step 2: Learning Phase (`k=2` Observations)

Candidate C arrives (Rank 6) → Observe but do not hire.

Candidate A arrives (Rank 4) → Observe but do not hire.

At the end of this phase, the best candidate seen so far is A (Rank 4).

Step 3: Selection Phase (Hire the First Better Candidate)

k = ⌊ ​⌋ =
e

7
⌊ ⌋ =

2.718
7

⌊2.57⌋ = 2

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 4/7

Now, we evaluate the remaining candidates and hire the first candidate better than Rank 4.

Candidate B arrives (Rank 2)

Rank 2 < Rank 4 (Best seen so far) ✅ Hire B.

Stop the process (no further evaluation).

Final Decision: Hired Candidate = B (Rank 2)

4. Another Numerical Example

Let's analyze another random arrival order for the same set of candidates.

New Arrival Order:

`E → B → A → G → C → D → F`

Step 1: Compute `k`

(Same as before, `k = 2`)

Step 2: Learning Phase (`k=2` Observations)

Candidate E arrives (Rank 5) → Observe.

Candidate B arrives (Rank 2) → Observe.

At the end of this phase, the best seen candidate = B (Rank 2).

Step 3: Selection Phase

Candidate A arrives (Rank 4)

Rank 4 > Rank 2 → Do not hire.

Candidate G arrives (Rank 7)

Rank 7 > Rank 2 → Do not hire.

Candidate C arrives (Rank 6)

Rank 6 > Rank 2 → Do not hire.

Candidate D arrives (Rank 1)

Rank 1 < Rank 2 ✅ Hire D.

Stop the process.

Final Decision: Hired Candidate = D (Rank 1, Best Overall)

5. Probability Analysis

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 5/7

What is the chance of selecting the best candidate?

The probability of success follows the Secretary Problem formula:

This means that the algorithm selects the best candidate 37% of the time, which is significantly better
than random selection (14%).

6. Why Does This Algorithm Work Well?

We learn from early candidates (reducing risk).

We avoid hiring too early (ensuring a better selection process).

We increase the probability of picking the best candidate.

7. Worst-Case and Best-Case Scenarios

Worst Case

The best candidate appears in the first `k` candidates (we never hire them).

Example: If the best candidate (Rank 1) appears in the learning phase, they will be ignored.

Best Case

The best candidate appears just after the learning phase, making them immediately hireable.

8. Summary & Key Takeaways

Factor Naive Hiring Randomized Algorithm

Probability of Best Candidate Low (~14%) ~37%

Decision Time Complexity O(n) O(n)

Recall Allowed? ❌ No ❌ No

Strategy Pick first best candidate Observe `k`, then pick first better

Key Insights

The randomized strategy triples the probability of hiring the best candidate compared to naive
approaches.

The best value of `k` is `n/e`, balancing learning and selection phases.

Works well in real-world hiring, auctions, and decision-making scenarios.

9. Additional Variations

P (Best Candidate Selected) = ​ ≈
e

1
0.37

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 6/7

1. Multiple Positions Hiring: Extend the strategy for hiring `m` out of `n` candidates.

2. Cost-Based Hiring: Introduce costs for interviewing candidates to optimize selection.

3. Relaxed Recall: Some real-world settings allow recalling the last `m` candidates.

10. Conclusion

Randomized algorithms provide a powerful solution for hiring problems by balancing observation
and selection. By carefully choosing k = n/e, we can maximize our chances of hiring the best candidate
in an efficient, probabilistic manner.

Would you like further modifications, such as Python code implementation or real-world
applications? 🚀

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 7/7

@S S Roy, 23rd March, 2025

https://pdfcrowd.com/chatgpt-to-pdf/?ref=chatgpt
https://pdfcrowd.com/api/html-to-pdf-api/?ref=chatgpt

