Randomized Algorithms for the Hiring Problem

1. Problem Statement

The **Hiring Problem** models the process of hiring the best candidate for a job. The problem assumes that candidates arrive sequentially, and we must decide immediately whether to hire or reject a candidate, without recalling past candidates.

2. Naïve Deterministic Approach

In a deterministic setting, the best strategy is to hire the first best candidate encountered. However, without knowledge of future candidates, we might hire a suboptimal choice early on. A deterministic strategy does not work well if better candidates arrive later.

3. Randomized Algorithm for the Hiring Problem

A **randomized approach** improves the probability of selecting the best candidate. The idea is to divide the selection process into two phases:

- Phase 1 (Learning Phase): Observe the first `k` candidates but do not hire anyone.
- **Phase 2 (Selection Phase):** Hire the first candidate who is better than all the candidates observed in Phase 1.

This method ensures a better chance of selecting the best candidate.

4. The Randomized Algorithm

Algorithm Steps

- 1. Choose a random integer `k` (typically `k = n/e` where `e ≈ 2.718 `).
- 2. **Observe** the first `**k**` candidates but do not hire.
- 3. Select the first candidate that is better than all observed candidates.
- 4. If no such candidate is found, stick with the last candidate.

5. Numerical Example

Problem Setup

Candidate	Rank (1 = best)
A	3
В	6
С	1
D	5
E	2
F	7
G	4

Suppose there are **7 candidates**, each with a unique ranking (1 = best, 7 = worst):

We assume candidates arrive in the order `A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \rightarrow G`.

Step-by-Step Execution

Step 1: Choose `k`

For `n = 7`, an optimal choice is `k = $[7/e] = [7/2.718] \approx 2$ `. So, we observe the first **2** candidates (`A` and `B`) but do not hire anyone.

Step 2: Observe First `k` Candidates (Learning Phase)

- Candidate **A** arrives (Rank **3**). **Do not hire**.
- Candidate **B** arrives (Rank **6**). **Do not hire**.

At the end of this phase, the **best candidate seen so far is A (Rank 3)**.

Step 3: Selection Phase

- Candidate C arrives (Rank 1). Since 1 < 3 (best seen so far), hire C.
- Stop hiring, even if better candidates arrive later.

Thus, Candidate C is selected, who is actually the best candidate!

6. Analysis of Probability of Success

Success Probability Calculation

To succeed, we must select the absolute best candidate. The probability of this happening follows the **Secretary Problem**:

$$P({
m Success})pprox rac{1}{e}pprox 0.37$$

That means the randomized approach selects the best candidate **about 37% of the time**, which is significantly better than a naive deterministic method.

7. Advantages of Randomized Hiring

- Higher success rate (37%) compared to naive strategies.
- Works without prior knowledge of candidate distribution.
- Efficient since decisions are made in O(n) time.

8. Disadvantages

- Still **not guaranteed** to pick the best candidate.
- Requires **randomness**, which might not be practical in some real-world hiring processes.

9. Conclusion

Randomized algorithms provide an elegant solution to the hiring problem, significantly increasing the probability of selecting the best candidate compared to naive approaches. By using a **learning phase followed by an optimal stopping rule**, we can improve hiring outcomes.

Example-2

1. Problem Statement

The **Hiring Problem** models a scenario where we want to hire the best candidate for a job. However, we must make hiring decisions **immediately** without the ability to recall previously rejected candidates.

We assume:

- There are **n** candidates.
- Each candidate has a unique rank (1 = best, n = worst).
- Candidates arrive in a **random order**.
- Once a candidate is rejected, they cannot be recalled.

2. The Randomized Algorithm

The randomized selection strategy follows these steps:

- 1. Choose a threshold `k`, usually `k = n/e` (where `e \approx 2.718`).
- 2. **Observe** the first `**k**` candidates without hiring.
- 3. Hire the first candidate who is better than all observed candidates.
- 4. If no such candidate appears, hire the last one.

Why Does This Work?

- The first `k` candidates **serve as a benchmark** (learning phase).
- The remaining candidates have a chance to be compared against an established standard.
- This approach increases the probability of hiring the best candidate.

3. Step-by-Step Numerical Example

Let's consider **7 candidates** arriving in random order. Their **true rankings** are:

Candidate	Rank (1 = best)
A	4
В	2
С	6
D	1
E	5
F	3
G	7

Candidates arrive in this random order:

 $C \rightarrow A \rightarrow B \rightarrow G \rightarrow F \rightarrow E \rightarrow D$

Step 1: Compute `k`

For n = 7, the optimal threshold is:

$$k = \lfloor rac{7}{e}
floor = \lfloor rac{7}{2.718}
floor = \lfloor 2.57
floor = 2$$

This means we **observe** the first **2** candidates without hiring.

Step 2: Learning Phase (`k=2` Observations)

- Candidate **C** arrives (Rank **6**) \rightarrow Observe but do not hire.
- Candidate A arrives (Rank 4) \rightarrow Observe but do not hire.

At the end of this phase, the **best candidate seen so far is A (Rank 4)**.

Step 3: Selection Phase (Hire the First Better Candidate)

Now, we evaluate the remaining candidates and hire the first candidate better than Rank 4.

- Candidate **B** arrives (Rank **2**)
 - Rank **2** < Rank **4** (Best seen so far) **V** Hire B.
 - Stop the process (no further evaluation).

Final Decision: Hired Candidate = B (Rank 2)

4. Another Numerical Example

Let's analyze **another random arrival order** for the same set of candidates.

New Arrival Order:

 $E \rightarrow B \rightarrow A \rightarrow G \rightarrow C \rightarrow D \rightarrow F$

Step 1: Compute `k`

(Same as before, `k = 2`)

Step 2: Learning Phase (`k=2` Observations)

- Candidate **E** arrives (Rank **5**) → Observe.
- Candidate **B** arrives (Rank **2**) \rightarrow Observe.

At the end of this phase, the **best seen candidate = B (Rank 2)**.

Step 3: Selection Phase

- Candidate **A** arrives (Rank **4**)
 - Rank 4 > Rank $2 \rightarrow$ **Do not hire**.
- Candidate **G** arrives (Rank **7**)
 - Rank **7** > Rank **2** \rightarrow **Do not hire**.
- Candidate **C** arrives (Rank **6**)
 - Rank $\mathbf{6}$ > Rank $\mathbf{2} \rightarrow \mathbf{Do not hire}$.
- Candidate **D** arrives (Rank **1**)
 - Rank **1** < Rank **2** <mark>2</mark> Hire D.
 - Stop the process.

Final Decision: Hired Candidate = D (Rank 1, Best Overall)

5. Probability Analysis

What is the chance of selecting the best candidate?

The probability of success follows the **Secretary Problem** formula:

$$P(ext{Best Candidate Selected}) = rac{1}{e} pprox 0.37$$

This means that the algorithm **selects the best candidate 37% of the time**, which is significantly better than **random selection (14%)**.

6. Why Does This Algorithm Work Well?

- We learn from early candidates (reducing risk).
- We avoid hiring too early (ensuring a better selection process).
- We increase the probability of picking the best candidate.

7. Worst-Case and Best-Case Scenarios

Worst Case

- The best candidate appears in the **first** `k` **candidates** (we never hire them).
- Example: If the best candidate (Rank 1) appears in the learning phase, they will be ignored.

Best Case

• The best candidate appears just **after the learning phase**, making them immediately hireable.

8. Summary & Key Takeaways

Factor	Naive Hiring	Randomized Algorithm
Probability of Best Candidate	Low (~14%)	~37%
Decision Time Complexity	O(n)	O(n)
Recall Allowed?	X No	XNo
Strategy	Pick first best candidate	Observe ` k `, then pick first better

Key Insights

- The randomized strategy **triples the probability** of hiring the best candidate compared to naive approaches.
- The best **value of** `k` **is** `n/e`, balancing learning and selection phases.
- Works well in real-world hiring, auctions, and decision-making scenarios.

9. Additional Variations

- 1. **Multiple Positions Hiring:** Extend the strategy for hiring `m` out of `n` candidates.
- 2. **Cost-Based Hiring:** Introduce costs for interviewing candidates to optimize selection.
- 3. **Relaxed Recall:** Some real-world settings allow recalling the last `m` candidates.

10. Conclusion

Randomized algorithms provide a **powerful solution** for hiring problems by **balancing observation and selection**. By carefully choosing **k** = **n**/**e**, we can maximize our chances of hiring the **best candidate** in an **efficient**, **probabilistic** manner.

@S S Roy, 23rd March, 2025