
Sampling Methods for Imbalance

Explain Sampling Methods for class imbalance with two solid extensive numericals.

Class imbalance is a common issue in machine learning where one class has significantly more samples
than another. This can lead to biased models that favor the majority class. To address this, various
sampling methods are used, primarily:

1. Random Oversampling (ROS)

2. Random Undersampling (RUS)

3. Synthetic Minority Oversampling Technique (SMOTE)

4. Adaptive Synthetic Sampling (ADASYN)

5. NearMiss (Undersampling)

6. Cluster-Based Sampling

Let's understand Random Oversampling and Random Undersampling with two detailed numerical
examples.

Example 1: Random Oversampling (ROS)

Problem Statement:
Suppose we have a binary classification dataset with 1000 samples. The distribution is:

Class 0 (Majority class): 900 samples

Class 1 (Minority class): 100 samples

To balance the dataset, we use Random Oversampling, where we randomly duplicate minority class
samples until both classes are equal.

Solution:

1. Target Samples in Minority Class
To balance, we need 900 samples in Class 1.

Currently, Class 1 has 100 samples.

We need 900 - 100 = 800 additional samples.

2. Oversampling Process

We randomly select samples from Class 1 and duplicate them.

Suppose we randomly select Sample IDs:

We duplicate these multiple times until the count reaches 900.

S1,S2,S3, ...,S100

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 1/8

@S S Roy

The new dataset will have:

Class 0 (Majority): 900 samples

Class 1 (Minority after oversampling): 900 samples

Impact:

Balances the dataset without losing majority class information.

Increases computational cost (since the dataset size grows).

May lead to overfitting as the same minority samples are repeated.

Example 2: Random Undersampling (RUS)

Problem Statement:
Consider the same dataset:

Class 0 (Majority class): 900 samples

Class 1 (Minority class): 100 samples

Instead of oversampling, we use Random Undersampling, where we randomly remove samples from
the majority class to balance the dataset.

Solution:

1. Target Samples in Majority Class
To balance, we need 100 samples in Class 0 (same as Class 1).

Currently, Class 0 has 900 samples.

We need to remove 800 samples.

2. Undersampling Process

We randomly select 800 samples from Class 0 and remove them.

Suppose we keep the following 100 samples:

The new dataset will have:

Class 0 (Majority after undersampling): 100 samples

Class 1 (Minority): 100 samples

Impact:

Reduces dataset size, making training faster.

Prevents overfitting to minority class.

Loss of valuable information due to removal of majority class samples.

Key Takeaways

S101,S302,S509, ...,S980

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 2/8

@S S Roy

Sampling Method Approach Advantages Disadvantages

Random Oversampling
(ROS)

Duplicates minority
class samples

Balances class ratio,
retains all data

Overfitting risk, increased
dataset size

Random
Undersampling (RUS)

Removes majority
class samples

Faster training, prevents
overfitting

Loss of important majority
class information

Would you like me to extend this explanation to include SMOTE or ADASYN? 🚀

yes

Example 3: Synthetic Minority Oversampling Technique (SMOTE)

Problem Statement:
Consider a dataset with 1000 samples, where:

Class 0 (Majority class): 900 samples

Class 1 (Minority class): 100 samples

Instead of simply duplicating minority samples (Random Oversampling), SMOTE generates synthetic
samples using interpolation techniques.

Solution:

1. Determine the Target Samples in Minority Class

To balance, we need 900 samples in Class 1.

We currently have 100 samples, so we need 800 synthetic samples.

2. SMOTE Process

Select a random sample from Class 1.

Identify its k-nearest neighbors (commonly, k = 5).

Randomly select one of the neighbors and create a synthetic point between them using the
formula:

where is a random number between 0 and 1.

Example Calculation:

Assume we have two Class 1 samples:

Generate a synthetic sample using:

X =new X +original λ × (X −neighbor X)original

λ

X =original (2, 3)

X =neighbor (4, 5)

X =new (2, 3) + 0.5 × [(4, 5) − (2, 3)]

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 3/8

This process is repeated until we generate 800 synthetic samples.

Final Dataset Distribution:

Class 0: 900 samples

Class 1 (after SMOTE): 900 samples

Impact of SMOTE:
✅ Generates diverse synthetic samples, reducing overfitting.
✅ Preserves the feature distribution better than random oversampling.
❌ Can create noise if not tuned properly.
❌ Does not address class overlap, leading to potential misclassification.

Example 4: Adaptive Synthetic Sampling (ADASYN)

ADASYN is an extension of SMOTE but focuses on generating more synthetic samples for hard-to-
learn examples rather than uniformly generating samples.

Problem Statement:
Consider the same dataset:

Class 0 (Majority class): 900 samples

Class 1 (Minority class): 100 samples

Solution:

1. Identify Hard-to-Learn Samples

Compute the imbalance ratio:

For each minority sample, calculate the number of majority class neighbors (k-nearest
neighbors).

More synthetic samples are generated for samples with a higher majority-class presence in
their neighborhood.

2. ADASYN Formula for Synthetic Data:

where is a weight determined by class density (i.e., more weight for hard-to-learn samples).

Example Calculation:

Consider three Class 1 samples:

= (2, 3) + 0.5 × (2, 2)

= (2, 3) + (1, 1) = (3, 4)

IR = =
Minority Class Size
Majority Class Size

 =
100
900

9

X =new X +original λ × (X −neighbor X)original

λ

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 4/8

 (has 4 majority neighbors)

 (has 1 majority neighbor)

 (has 0 majority neighbors)
ADASYN assigns higher synthetic sample generation for since it has more majority neighbors.

Fewer samples are generated for as it is already well-represented.

Final Dataset Distribution:

Class 0: 900 samples

Class 1 (after ADASYN): ~900 samples, but denser near harder samples.

Comparison: SMOTE vs ADASYN

Method Approach Strengths Weaknesses

SMOTE Interpolates synthetic samples Prevents overfitting, retains
diversity

May create unrealistic
samples

ADASYN Generates more samples in hard-to-
learn regions

Focuses on misclassified
areas

May reinforce noise

Final Thoughts

📌 Use SMOTE when you want even distribution and more diverse samples.
📌 Use ADASYN when the dataset has challenging decision boundaries.
📌 For extremely imbalanced cases (e.g., 99:1 ratio), combine oversampling (SMOTE) with
undersampling (NearMiss or RUS).

Would you like me to include NearMiss (Undersampling) or Cluster-Based Sampling as well? 🚀

yes

Example 5: NearMiss (Undersampling)

NearMiss is an undersampling technique that selects only the most informative majority class
samples, rather than randomly removing them. This reduces data loss while balancing the dataset.

Problem Statement:
We have a dataset with:

Class 0 (Majority): 900 samples

Class 1 (Minority): 100 samples

Instead of randomly removing 800 samples from Class 0 (Random Undersampling), we apply
NearMiss, which removes only the least informative samples.

A = (2, 3)

B = (4, 5)

C = (6, 7)
A

C

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 5/8

Types of NearMiss

1. NearMiss-1: Keeps majority samples closest to the minority class (ensuring better decision
boundary).

2. NearMiss-2: Keeps majority samples far from other majority samples (ensuring diversity).

3. NearMiss-3: Selects majority samples with the nearest k-neighbors from the minority class.

Solution (NearMiss-1 Example)

1. Compute Distance Between Samples

Consider three majority class samples:

, ,

Consider a minority class sample:

2. Compute Euclidean Distance

Distance between and :

Distance between and :

Distance between and :

3. Undersampling Decision

Keep samples closest to minority class →

Remove distant samples →

Final Dataset Distribution (After NearMiss-1)

Class 0 (Majority after undersampling): 100 samples

Class 1 (Minority): 100 samples

Impact of NearMiss

✅ Ensures the majority class retains meaningful samples.
✅ Preserves decision boundaries for better classification.
❌ Can remove critical majority class samples, leading to underfitting.

Example 6: Cluster-Based Sampling

A = (2, 3) B = (5, 6) C = (10, 12)

M = (3, 4)

A M

d(A,M) = =(3 − 2) + (4 − 3)2 2
 =1 + 1 ≈2 1.41

B M

d(B,M) = =(5 − 3) + (6 − 4)2 2
 =4 + 4 ≈8 2.83

C M

d(C,M) = =(10 − 3) + (12 − 4)2 2
 =49 + 64 ≈113 10.63

A,B

C

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 6/8

Cluster-based sampling groups similar data points together, then selects representative samples from
each group. This helps retain the dataset's overall structure while reducing class imbalance.

Problem Statement:
Consider a dataset with:

Class 0 (Majority): 900 samples

Class 1 (Minority): 100 samples

Instead of randomly removing majority samples, we apply clustering (e.g., k-means) to divide
majority class samples into groups and retain representative samples from each.

Solution (k-Means Clustering)

1. Apply k-Means Clustering on Class 0

Suppose we set k = 10 (dividing Class 0 into 10 clusters).

The 900 samples are now grouped into 10 clusters.

2. Select Representative Samples

From each cluster, we randomly sample 10 points.

This ensures that different patterns and distributions of Class 0 are preserved.

Final Dataset Distribution (After Clustering-Based Undersampling)

Class 0 (Majority after clustering-based undersampling): 100 samples

Class 1 (Minority): 100 samples

Impact of Cluster-Based Sampling

✅ Retains diverse majority class samples.
✅ Prevents random information loss.
❌ Computationally expensive compared to simple undersampling.

Final Comparison of Sampling Methods

Method Approach Strengths Weaknesses

Random Oversampling
(ROS)

Duplicates minority class samples Prevents information
loss

Overfitting risk

Random
Undersampling (RUS)

Removes majority class samples Faster training Loss of valuable
information

SMOTE Interpolates between minority
class samples

Reduces overfitting May create synthetic
noise

ADASYN Focuses on hard-to-learn areas Improves decision
boundaries

May reinforce noise

NearMiss Selects closest majority samples Retains informative May remove critical

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 7/8

Method Approach Strengths Weaknesses
data samples

Cluster-Based
Sampling

Groups majority samples, selects
representatives

Preserves diversity Computationally
expensive

Final Thoughts

✅ For small datasets → Use SMOTE or ADASYN
✅ For large imbalanced datasets → Use NearMiss or Cluster-Based Sampling
✅ For extreme imbalance (e.g., fraud detection, rare disease prediction) → Use a hybrid approach
(SMOTE + NearMiss)

Would you like a Python implementation for these methods? 🚀

Printed using ChatGPT to PDF, powered by PDFCrowd HTML to PDF API. 8/8

@S S Roy

