1076

Chapter 34 NP-Completeness

Given a circuit C, it is straightforward to produce such a formula ¢ in polynomial
time.

Why is the circuit C satisfiable exactly when the formula ¢ is satisfiable? If
C has a satisfying assignment, then each wire of the circuit has a well-defined
value, and the output of the circuit is 1. Therefore, when wire values are as-
signed to variables in ¢, each clause of ¢ evaluates to 1, and thus the conjunction
of all evaluates to 1. Conversely, if some assignment causes ¢ to evaluate to 1,
the circuit C is satisfiable by an analogous argument. Thus, we have shown that
CIRCUIT-SAT <p SAT, which completes the proof. [

3-CNF satisfiability

Reducing from formula satisfiability gives us an avenue to prove many problems
NP-complete. The reduction algorithm must handle any input formula, though,
and this requirement can lead to a huge number of cases to consider. Instead,
it is usually simpler to reduce from a restricted language of boolean formulas.
Of course, the restricted language must not be polynomial-time solvable. One
convenient language is 3-CNF satisfiability, or 3-CNF-SAT.

In order to define 3-CNF satisfiability, we first need to define a few terms. A
literal in a boolean formula is an occurrence of a variable (such as x;) or its nega-
tion (—x;). A clause is the OR of one or more literals, such as x; V —x, V —x3.
A boolean formula is in conjunctive normal form,or CNF , if it is expressed as an
AND of clauses, and it’s in 3-conjunctive normal form, or 3-CNF , if each clause
contains exactly three distinct literals.

For example, the boolean formula

(X1 V=x1 VX)) A(X3 VX VX)) A (X V—X3 V —ixy)

is in 3-CNF. The first of its three clauses is (x; V —x; V —x,), which contains the
three literals x;, —x;, and —x,.

The language 3-CNF-SAT consists of encodings of boolean formulas in 3-CNF
that are satisfiable. The following theorem shows that a polynomial-time algorithm
that can determine the satisfiability of boolean formulas is unlikely to exist, even
when they are expressed in this simple normal form.

Theorem 34.10
Satisfiability of boolean formulas in 3-conjunctive normal form is NP-complete.

Proof The argument from the proof of Theorem 34.9 to show that SAT € NP ap-
plies equally well here to show that 3-CNF-SAT € NP. By Lemma 34.8, therefore,
we need only show that SAT <p 3-CNF-SAT.

344 NP-completeness proofs 1077

X1 X3

Figure 34.11 The tree corresponding to the formula ¢ = ((x1 = x2)V—((—x1 <> x3)VXxq)) A—x2.

We break the reduction algorithm into three basic steps. Each step progressively
transforms the input formula ¢ closer to the desired 3-conjunctive normal form.

The first step is similar to the one used to prove CIRCUIT-SAT <p SAT in
Theorem 34.9. First, construct a binary “parse” tree for the input formula ¢, with
literals as leaves and connectives as internal nodes. Figure 34.11 shows such a
parse tree for the formula

¢ = ((x1 = x2) V =((—x1 © X3) V X4)) A x5 . (34.3)
If the input formula contains a clause such as the OR of several literals, use as-
sociativity to parenthesize the expression fully so that every internal node in the
resulting tree has just one or two children. The binary parse tree is like a circuit for
computing the function.

Mimicking the reduction in the proof of Theorem 34.9, introduce a variable y;
for the output of each internal node. Then rewrite the original formula ¢ as the
AND of the variable at the root of the parse tree and a conjunction of clauses
describing the operation of each node. For the formula (34.3), the resulting expres-
sion is
¢ = y1 A (1o (Y2A—x2))

A (2 < (y3V y4))
(3 © (x1 > x2))
(Ya < —Ys)
(s <> (¥6 V X4))

7AN
7AN
AN
A (¥s < (=x1 < x3)) .

1078

Chapter 34 NP-Completeness

i y2 x| 1< (2A—x2))
1 1 1 0

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 1

0 1 0 0

0 0 1 1

0 0 0 1

Figure 34.12 The truth table for the clause (y1 <> (y2 A —x2)).

The formula ¢’ thus obtained is a conjunction of clauses ¢;, each of which has at
most three literals. These clauses are not yet ORs of three literals.

The second step of the reduction converts each clause ¢; into conjunctive nor-
mal form. Construct a truth table for ¢/ by evaluating all possible assignments to
its variables. Each row of the truth table consists of a possible assignment of the
variables of the clause, together with the value of the clause under that assignment.
Using the truth-table entries that evaluate to 0, build a formula in disjunctive nor-
mal form (or DNF)—an OR of ANDs—that is equivalent to —¢!. Then negate
this formula and convert it into a CNF formula ¢;" by using DeMorgan’s laws for
propositional logic,

—(aAb) = —maV b,

—=(avb) = —aAn-b,

to complement all literals, change ORs into ANDs, and change ANDs into ORs.
In our example, the clause ¢; = (y1 <> (¥2 A —x3)) converts into CNF as fol-

lows. The truth table for ¢] appears in Figure 34.12. The DNF formula equivalent
to —¢] is

D1 AY2AX) V(P1 A=Ya AX2) V(Y1 A=p2 A=X2) V(2Y1 A Y2 A —X2)
Negating and applying DeMorgan’s laws yields the CNF formula
1= Y1V =y V=x) A(=y1 VY2V —x)
AEY1V Y2 VX)) A1V —ya VX)),

which is equivalent to the original clause ¢ .

At this point, each clause ¢ of the formula ¢’ has been converted into a CNF
formula ¢/, and thus ¢’ is equivalent to the CNF formula ¢” consisting of the
conjunction of the ¢;". Moreover, each clause of ¢” has at most three literals.

344 NP-completeness proofs 1079

The third and final step of the reduction further transforms the formula so that
each clause has exactly three distinct literals. From the clauses of the CNF for-
mula ¢”, construct the final 3-CNF formula ¢”’. This formula also uses two aux-
iliary variables, p and ¢g. For each clause C; of ¢”, include the following clauses
in¢”:

e If C; contains three distinct literals, then simply include C; as a clause of ¢"”.

* If C; contains exactly two distinct literals, that is, if C; = (I, V I;), where [,
and [, are literals, then include (I; VI, vV p) A (I; vV I, vV = p) as clauses of ¢ .
The literals p and —p merely fulfill the syntactic requirement that each clause
of ¢ contain exactly three distinct literals. Whether p = 0 or p = 1, one of
the clauses is equivalent to /; V I, and the other evaluates to 1, which is the
identity for AND.

* If C; contains just one distinct literal /, then include (I vV pVvg)A(IV pV—=g) A
(v =pvqg)A(lV—pV—q)asclauses of ¢"”. Regardless of the values of
p and g, one of the four clauses is equivalent to /, and the other three evaluate
to 1.

We can see that the 3-CNF formula ¢’ is satisfiable if and only if ¢ is satisfiable
by inspecting each of the three steps. Like the reduction from CIRCUIT-SAT to
SAT, the construction of ¢’ from ¢ in the first step preserves satisfiability. The sec-
ond step produces a CNF formula ¢” that is algebraically equivalent to ¢’. Then the
third step produces a 3-CNF formula ¢ that is effectively equivalent to ¢”, since
any assignment to the variables p and g produces a formula that is algebraically
equivalent to ¢”.

We must also show that the reduction can be computed in polynomial time. Con-
structing ¢’ from ¢ introduces at most one variable and one clause per connective
in ¢. Constructing ¢” from ¢’ can introduce at most eight clauses into ¢” for
each clause from ¢’, since each clause of ¢’ contains at most three variables, and
the truth table for each clause has at most 23 = 8 rows. The construction of ¢”’
from ¢” introduces at most four clauses into ¢” for each clause of ¢”. Thus the
size of the resulting formula ¢” is polynomial in the length of the original formula.
Each of the constructions can be accomplished in polynomial time. |

Exercises

34.4-1

Consider the straightforward (nonpolynomial-time) reduction in the proof of The-
orem 34.9. Describe a circuit of size n that, when converted to a formula by this
method, yields a formula whose size is exponential in 7.

