1082

Chapter 34  NP-Completeness

Theorem 34.11
The clique problem is NP-complete.

Proof First, we show that CLIQUE € NP. For a given graph G = (V, E), use the
set V/ C V of vertices in the clique as a certificate for G. To check whether V' is a
clique in polynomial time, check whether, for each pair u,v € V’, the edge (u, v)
belongs to E.

We next prove that 3-CNF-SAT <p CLIQUE, which shows that the clique prob-
lem is NP-hard. You might be surprised that the proof reduces an instance of
3-CNF-SAT to an instance of CLIQUE, since on the surface logical formulas seem
to have little to do with graphs.

The reduction algorithm begins with an instance of 3-CNF-SAT. Let ¢ =
Ci AN Cy A -+ A Cg be a boolean formula in 3-CNF with k clauses. For r =
1,2,...,k, each clause C, contains exactly three distinct literals: /7, 5, and /5.
We will construct a graph G such that ¢ is satisfiable if and only if G contains a
clique of size k.

We construct the undirected graph G = (V, E) as follows. For each clause C, =
(I7 vI3 vI7) in ¢, place a triple of vertices v}, v;,and v3 into V. Add edge (v], v}
into E if both of the following hold:

* v and vy are in different triples, that is, 7 # s, and
* their corresponding literals are consistent, that is, [T is not the negation of ;.

We can build this graph from ¢ in polynomial time. As an example of this con-
struction, if

¢ =(x1 VX2V x3) A(mX1 VX2V X3) A (X1 VX2V X3),

then G is the graph shown in Figure 34.14.

We must show that this transformation of ¢ into G is a reduction. First, suppose
that ¢ has a satisfying assignment. Then each clause C, contains at least one
literal I that is assigned 1, and each such literal corresponds to a vertex v; . Picking
one such “true” literal from each clause yields a set V' of k vertices. We claim that
V' is a clique. For any two vertices v], v} € V', where r # s, both corresponding
literals /] and I§ map to 1 by the given satisfying assignment, and thus the literals
cannot be complements. Thus, by the construction of G, the edge (v}, vjs- ) belongs
to E.

Conversely, suppose that G contains a clique V' of size k. No edges in G con-
nect vertices in the same triple, and so V'’ contains exactly one vertex per triple. If
v] € V', then assign 1 to the corresponding literal /7. Since G contains no edges
between inconsistent literals, no literal and its complement are both assigned 1.
Each clause is satisfied, and so ¢ is satisfied. (Any variables that do not correspond
to a vertex in the clique may be set arbitrarily.) ]



34.5 NP-complete problems 1083

C1 = X1V X3V X3

C, ==X VX2V X3

C3=Xx1 VX2V X3

Figure 34.14 The graph G derived from the 3-CNF formula ¢ = C1 A C2 A C3, where C1 =
(x1 V—xp V—=x3),Cr = (—x1 Vx2 VXx3),and C3 = (x1 V x2 V x3), in reducing 3-CNF-SAT
to CLIQUE. A satisfying assignment of the formula has xp = 0, x3 = 1, and x; set to either 0
or 1. This assignment satisfies C; with —=x5, and it satisfies C and C3 with x3, corresponding to
the clique with blue vertices.

In the example of Figure 34.14, a satisfying assignment of ¢ has x, = 0
and x3 = 1. A corresponding clique of size k = 3 consists of the vertices cor-
responding to —x, from the first clause, x3 from the second clause, and x3 from
the third clause. Because the clique contains no vertices corresponding to either x;
or —x1, this satisfying assignment can set x; to either 0 or 1.

The proof of Theorem 34.11 reduced an arbitrary instance of 3-CNF-SAT to an
instance of CLIQUE with a particular structure. You might think that we have
shown only that CLIQUE is NP-hard in graphs in which the vertices are restricted
to occur in triples and in which there are no edges between vertices in the same
triple. Indeed, we have shown that CLIQUE is NP-hard only in this restricted case,
but this proof suffices to show that CLIQUE is NP-hard in general graphs. Why?
If there were a polynomial-time algorithm that solves CLIQUE on general graphs,
it would also solve CLIQUE on restricted graphs.

The opposite approach—reducing instances of 3-CNF-SAT with a special struc-
ture to general instances of CLIQUE—does not suffice, however. Why not? Per-
haps the instances of 3-CNF-SAT that we choose to reduce from are “easy,” and so
we would not have reduced an NP-hard problem to CLIQUE.

Moreover, the reduction uses the instance of 3-CNF-SAT, but not the solution.
We would have erred if the polynomial-time reduction had relied on knowing



1084

Chapter 34  NP-Completeness

(@) (b)

Figure 34.15 Reducing CLIQUE to VERTEX-COVER. (a) An undirected graph G = (V, E) with
clique V' = {u, v, x, y}, shown in blue. (b) The graph G produced by the reduction algorithm that
has vertex cover V — V' = {w, z}, in blue.

whether the formula ¢ is satisfiable, since we do not know how to decide whether
¢ is satisfiable in polynomial time.

34.5.2 The vertex-cover problem

A vertex cover of an undirected graph G = (V, E) is a subset V’ C V such that
if (u,v) € E,thenu € V' or v € V’ (or both). That is, each vertex “covers” its
incident edges, and a vertex cover for G is a set of vertices that covers all the edges
in E. The size of a vertex cover is the number of vertices in it. For example, the
graph in Figure 34.15(b) has a vertex cover {w, z} of size 2.

The vertex-cover problem is to find a vertex cover of minimum size in a given
graph. For this optimization problem, the corresponding decision problem asks
whether a graph has a vertex cover of a given size k. As a language, we define

VERTEX-COVER = {(G, k) : graph G has a vertex cover of size k} .

The following theorem shows that this problem is NP-complete.

Theorem 34.12
The vertex-cover problem is NP-complete.

Proof We first show that VERTEX-COVER € NP. Given a graph G = (V, E)
and an integer k, the certificate is the vertex cover V' C V itself. The verification
algorithm affirms that |V’| = k, and then it checks, for each edge (u,v) € E, that
u € V'orv e V' lItis easy to verify the certificate in polynomial time.

To prove that the vertex-cover problem is NP-hard, we reduce from the clique
problem, showing that CLIQUE <, VERTEX-COVER. This reduction relies



34.5 NP-complete problems 1085

on the notion of the complement of a graph. Given an undirected graph G =
(V,E), we define the complement of G as a graph G = (V, E), where E =
{(u,v) :u,v € V,u#v, and (u,v) ¢ E}. In other words, G is the graph con-
taining exactly those edges that are not in G. Figure 34.15 shows a graph and its
complement and illustrates the reduction from CLIQUE to VERTEX-COVER.

The reduction algorithm takes as input an instance (G, k) of the clique problem
and computes the complement G in polynomial time. The output of the reduction
algorithm is the instance (G, |V| — k) of the vertex-cover problem. To complete
the proof, we show that this transformation is indeed a reduction: the graph G
contains a clique of size k if and only if the graph G has a vertex cover of size
V] —k.

Suppose that G contains a clique V' € V with |V’| = k. We claim that V — V'
is a vertex cover in G. Let (u,v) be any edge in E. Then, (u,v) ¢ E, which
implies that at least one of u or v does not belong to V’, since every pair of vertices
in V' is connected by an edge of E. Equivalently, at least one of u or v belongs
to V — V', which means that edge (u, v) is covered by V — V'. Since (u, v) was
chosen arbitrarily from E, every edge of E is covered by a vertex in V —V’. Hence
the set V — V', which has size |V | — k, forms a vertex cover for G.

Conversely, suppose that G has a vertex cover V' C V, where |V'| = |V| — k.
Then for all u,v € V,if (u,v) € E,thenu € V' orv € V' or both. The
contrapositive of this implication is that for all u,v € V,ifu ¢ V' and v ¢ V’,
then (u,v) € E. Inother words, V—V"isaclique, and it has size |V |—|V'| = k. m

Since VERTEX-COVER is NP-complete, we don’t expect to find a polynomial-
time algorithm for finding a minimum-size vertex cover. Section 35.1 presents a
polynomial-time “approximation algorithm,” however, which produces “approxi-
mate” solutions for the vertex-cover problem. The size of a vertex cover produced
by the algorithm is at most twice the minimum size of a vertex cover.

Thus, you shouldn’t give up hope just because a problem is NP-complete. You
might be able to design a polynomial-time approximation algorithm that obtains
near-optimal solutions, even though finding an optimal solution is NP-complete.
Chapter 35 gives several approximation algorithms for NP-complete problems.

34.53 The hamiltonian-cycle problem

We now return to the hamiltonian-cycle problem defined in Section 34.2.

Theorem 34.13
The hamiltonian cycle problem is NP-complete.



1086 Chapter 34  NP-Completeness

[u,v,1]
[u,v,2] O
[u,v,3] 7
[u,v,4] )
[u,v,3] .>
[u,v,6] (J

[v,u,1] [u,v,1]

Figure 34.16 The gadget used in reducing the vertex-cover problem to the hamiltonian-cycle prob-
lem. An edge (u, v) of graph G corresponds to gadget T'yy in the graph G’ created in the reduction.
(a) The gadget, with individual vertices labeled. (b)—(d) The paths highlighted in blue are the only
possible ones through the gadget that include all vertices, assuming that the only connections from
the gadget to the remainder of G’ are through vertices [u, v, 1], [u, v, 6], [v,u, 1], and [v, u, 6].

Proof We first show that HAM-CYCLE € NP. Given an undirected graph
G = (V, E), the certificate is the sequence of |V | vertices that makes up the hamil-
tonian cycle. The verification algorithm checks that this sequence contains each
vertex in V exactly once and that with the first vertex repeated at the end, it forms
acycle in G. That is, it checks that there is an edge between each pair of consecu-
tive vertices and between the first and last vertices. This certificate can be verified
in polynomial time.

We now prove that VERTEX-COVER <p HAM-CYCLE, which shows that
HAM-CYCLE is NP-complete. Given an undirected graph G = (V, E) and an
integer k, we construct an undirected graph G’ = (V’, E") that has a hamiltonian
cycle if and only if G has a vertex cover of size k. We assume without loss of
generality that G contains no isolated vertices (that is, every vertex in V has at
least one incident edge) and that k < |V|. (If an isolated vertex belongs to a vertex
cover of size k, then there also exists a vertex cover of size kK — 1, and for any graph,
the entire set V' is always a vertex cover.)

Our construction uses a gadget, which is a piece of a graph that enforces certain
properties. Figure 34.16(a) shows the gadget we use. For each edge (u, v) € E,the
constructed graph G’ contains one copy of this gadget, which we denote by I',.
We denote each vertex in 'y, by [u, v,i] or [v,u,i], where 1 <i < 6, so that each
gadget I'y,, contains 12 vertices. Gadget I',, also contains the 14 edges shown in
Figure 34.16(a).

Along with the internal structure of the gadget, we enforce the properties we
want by limiting the connections between the gadget and the remainder of the
graph G’ that we construct. In particular, only vertices [u, v, 1], [u, v, 6], [v,u, 1],
and [v, u, 6] will have edges incident from outside T',,. Any hamiltonian cycle



34.5 NP-complete problems 1087

of G’ must traverse the edges of Ty, in one of the three ways shown in Fig-
ures 34.16(b)—(d). If the cycle enters through vertex [u, v, 1], it must exit through
vertex [u, v, 6], and it either visits all 12 of the gadget’s vertices (Figure 34.16(b))
or the six vertices [u, v, 1] through [u, v, 6] (Figure 34.16(c)). In the latter case, the
cycle will have to reenter the gadget to visit vertices [v, u, 1] through [v, u, 6]. Simi-
larly, if the cycle enters through vertex [v, u, 1], it must exit through vertex [v, u, 6],
and either it visits all 12 of the gadget’s vertices (Figure 34.16(d)) or it visits the
six vertices [v,u, 1] through [v, u, 6] and reenters to visit [u, v, 1] through [u, v, 6]
(Figure 34.16(c)). No other paths through the gadget that visit all 12 vertices are
possible. In particular, it is impossible to construct two vertex-disjoint paths, one
of which connects [u,v, 1] to [v,u, 6] and the other of which connects [v,u, 1]
to [u, v, 6], such that the union of the two paths contains all of the gadget’s ver-
tices.

The only other vertices in ¥V’ other than those of gadgets are selector vertices
S1,82,...,5. We’ll use edges incident on selector vertices in G’ to select the k
vertices of the cover in G.

In addition to the edges in gadgets, E’ contains two other types of edges, which
Figure 34.17 shows. First, for each vertex u € V', edges join pairs of gadgets
in order to form a path containing all gadgets corresponding to edges incident
on u in G. We arbitrarily order the vertices adjacent to each vertex u € V as
u® y@ . yleeree®) wwhere degree(u) is the number of vertices adjacent to u.
To create a path in G’ through all the gadgets corresponding to edges incident
on u, E' contains the edges {([u,u®, 6], [u,uC*V 1]) : 1 <i < degree(u) — 1}.
In Figure 34.17, for example, we order the vertices adjacent to w as (x, y, z),
and so graph G’ in part (b) of the figure includes the edges ([w, x, 6], [w, y, 1])
and ([w, y, 6], [w, z, 1]). The vertices adjacent to x are ordered as (w, y), so that
G’ includes the edge ([x, w, 6], [x, y, 1]). For each vertex u € V, these edges in G’
fill in a path containing all gadgets corresponding to edges incident on u in G.

The intuition behind these edges is that if vertex u € V belongs to the vertex
cover of G, then G’ contains a path from [u, u™, 1] to [u, u(cet) 6] that “cov-
ers” all gadgets corresponding to edges incident on u. That is, for each of these
gadgets, say I, ;@ , the path either includes all 12 vertices (if u belongs to the ver-
tex cover but u® does not) or just the six vertices [u,u®, 1] through [u, u®, 6] (if
both u and u® belong to the vertex cover).

The final type of edge in E’ joins the first vertex [u,u®, 1] and the last vertex
[, uldeee) 6] of each of these paths to each of the selector vertices. That is, E’
includes the edges

{Gsj, [u,uP,1)):ueVandl < j <k}
U {(s;, [, u et 6]) :u e Vand1<j<k}.



1088

(a)

(b)

Chapter 34  NP-Completeness

[x.y.1] [w.y.1]

[xw6]  [x..6] [yx6]  [w.y6]

Figure 34.17 Reducing an instance of the vertex-cover problem to an instance of the hamiltonian-
cycle problem. (a) An undirected graph G with a vertex cover of size 2, consisting of the blue
vertices w and y. (b) The undirected graph G’ produced by the reduction, with the hamiltonian
cycle corresponding to the vertex cover highlighted in blue. The vertex cover {w, y} corresponds to
edges (s1, [w, x, 1]) and (s2, [¥, x, 1]) appearing in the hamiltonian cycle.

Next we show that the size of G’ is polynomial in the size of G, and hence it
takes time polynomial in the size of G to construct G’. The vertices of G’ are those
in the gadgets, plus the selector vertices. With 12 vertices per gadget, plus k < |V|
selector vertices, G’ contains a total of

< 12 |E|+|V]

vertices. The edges of G’ are those in the gadgets, those that go between gadgets,
and those connecting selector vertices to gadgets. Each gadget contains 14 edges,
totaling 14 | E| in all gadgets. For each vertex u € V', graph G’ has degree(u) — 1
edges going between gadgets, so that summed over all vertices in V,



34.5 NP-complete problems 1089

Z(degree(u) —1)=2|E|—-|V]

ueV
edges go between gadgets. Finally, G’ has two edges for each pair consisting of a
selector vertex and a vertex of V, totaling 2k | V| such edges. The total number of
edges of G’ is therefore
|E'| = (14 |[E)+ 2 |E| = V] + 2k [V])

=16 |[E|+ 2k - 1) |V|
<16 |E|+Q|V|-1D]|V].

Now we show that the transformation from graph G to G’ is a reduction. That is,
we must show that G has a vertex cover of size k if and only if G’ has a hamiltonian

cycle.
Suppose that G = (V, E) has a vertex cover V* C V, where |V*| = k. Let
V* = {u1,us,...,ur}. As Figure 34.17 shows, we can construct a hamiltonian

cycle in G’ by including the following edges'' for each vertex u; € V*. Start
by including edges {([uj,uy), 6], [uj,uyH), 1]) : 1 <i < degree(u;) — 1}, which
connect all gadgets corresponding to edges incident on u;. Also include the edges
within these gadgets as Figures 34.16(b)—(d) show, depending on whether the edge
is covered by one or two vertices in V*. The hamiltonian cycle also includes the
edges

(s, Iy, ulP 1) 1 1< j <k}
U {8y " 6) 1 < j <k — 13
U {(S1, [uk, ul(cdegree(uk))’ 6])} )

By inspecting Figure 34.17, you can verify that these edges form a cycle, where
u; = w and u, = y. The cycle starts at sq, visits all gadgets corresponding to
edges incident on u1, then visits §,, visits all gadgets corresponding to edges inci-
dent on u,, and so on, until it returns to s;. The cycle visits each gadget either once
or twice, depending on whether one or two vertices of V* cover its corresponding
edge. Because V* is a vertex cover for G, each edge in E is incident on some
vertex in V*, and so the cycle visits each vertex in each gadget of G'. Because the
cycle also visits every selector vertex, it is hamiltonian.

Conversely, suppose that G’ = (V’, E’) contains a hamiltonian cycle C € E’.
We claim that the set

V*={ueV:(s, [u,u,1]) € C forsome 1 < j <k} (34.4)

1 Technically, a cycle is defined as a sequence of vertices rather than edges (see Section B.4). In the
interest of clarity, we abuse notation here and define the hamiltonian cycle by its edges.



1090

Chapter 34  NP-Completeness

is a vertex cover for G.

We first argue that the set V* is well defined, that is, for each selector ver-
tex s;, exactly one of the incident edges in the hamiltonian cycle C is of the form
(55, [u,u™, 1)) for some vertex u € V. To see why, partition the hamiltonian cy-
cle C into maximal paths that start at some selector vertex s;, visit one or more gad-
gets, and end at some selector vertex s; without passing through any other selector
vertex. Let’s call each of these maximal paths a “cover path.” Let P be one such
cover path, and orient it going from s; to s;. If P contains the edge (s;, [u,u®, 1])
for some vertex u € V, then we have shown that one edge incident on s; has the
required form. Assume, then, that P contains the edge (s;, [v, v{@eec®) 6]) for
some vertex v € V. This path enters a gadget from the bottom, as drawn in Figures
34.16 and 34.17, and it leaves from the top. It might go through several gadgets,
but it always enters from the bottom of a gadget and leaves from the top. The only
edges incident on vertices at the top of a gadget either go to the bottoms of other
gadgets or to selector vertices. Therefore, after the last gadget in the series of gad-
gets visited by P, the edge taken must go to a selector vertex s;, so that P contains
an edge of the form (s;, [u,u™, 1]), where [u,u®, 1] is a vertex at the top of some
gadget. To see that not both edges incident on s; have this form, simply reverse the
direction of traversing P in the above argument.

Having established that the set V* is well defined, let’s see why it is a vertex
cover for G. We have already established that each cover path starts at some s;,
takes the edge (s;, [u, u™, 1]) for some vertex u € V, passes through all the gad-
gets corresponding to edges in E incident on u, and then ends at some selec-
tor vertex s;. (This orientation is the reverse of the orientation in the paragraph
above.) Let’s call this cover path P,, and by equation (34.4), the vertex cover V*
includes u. Each gadget visited by P, must be T, or T',, for some v € V. For
each gadget visited by P,, its vertices are visited by either one or two cover paths.
If they are visited by one cover path, then edge (u,v) € E is covered in G by
vertex u. If two cover paths visit the gadget, then the other cover path must be P,,
which implies that v € V*, and edge (u,v) € E is covered by both u and v. Be-
cause each vertex in each gadget is visited by some cover path, we see that each
edge in E is covered by some vertex in V*. ]

34.54 The traveling-salesperson problem

In the traveling-salesperson problem, which is closely related to the hamiltonian-
cycle problem, a salesperson must visit n cities. Let’s model the problem as a
complete graph with n vertices, so that the salesperson wishes to make a four,
or hamiltonian cycle, visiting each city exactly once and finishing at the starting
city. The salesperson incurs a nonnegative integer cost c(i, j) to travel from city i



34.5 NP-complete problems 1091

Figure 34.18 An instance of the traveling-salesperson problem. Edges highlighted in blue repre-
sent a minimum-cost tour, with cost 7.

to city j. In the optimization version of the problem, the salesperson wishes to
make the tour whose total cost is minimum, where the total cost is the sum of
the individual costs along the edges of the tour. For example, in Figure 34.18, a
minimum-cost tour is (¥, w, v, x, u), with cost 7. The formal language for the
corresponding decision problem is

TSP = {(G,c,k) : G = (V, E) is a complete graph,
c is afunction from V x V — N,
k € N, and
G has a traveling-salesperson tour with cost at most k} .

The following theorem shows that a fast algorithm for the traveling-salesperson
problem is unlikely to exist.

Theorem 34.14
The traveling-salesperson problem is NP-complete.

Proof We first show that TSP € NP. Given an instance of the problem, the
certificate is the sequence of n vertices in the tour. The verification algorithm
checks that this sequence contains each vertex exactly once, sums up the edge
costs, and checks that the sum is at most k. This process can certainly be done in
polynomial time.

To prove that TSP is NP-hard, we show that HAM-CYCLE <p TSP. Given an
instance G = (V, E) of HAM-CYCLE, construct an instance of TSP by forming
the complete graph G’ = (V, E’), where E' = {(i,j) :i,j € V andi # j}, with
the cost function ¢ defined as

0 if(i,j)eE,
1 if(i,j)¢E.
(Because G is undirected, it contains no self-loops, and so c(v,v) = 1 for all

vertices v € V.) The instance of TSP is then (G’, ¢, 0), which can be created in
polynomial time.

c@,j) =



1092

Chapter 34  NP-Completeness

We now show that graph G has a hamiltonian cycle if and only if graph G’ has
a tour of cost at most 0. Suppose that graph G has a hamiltonian cycle H. Each
edge in H belongs to E and thus has cost 0 in G’. Thus, H is a tour in G’ with
cost 0. Conversely, suppose that graph G’ has a tour H’ of cost at most 0. Since
the costs of the edges in E’ are 0 and 1, the cost of tour H' is exactly 0 and each
edge on the tour must have cost 0. Therefore, H' contains only edges in E. We
conclude that H' is a hamiltonian cycle in graph G. ]

34.5.5 The subset-sum problem

We next consider an arithmetic NP-complete problem. The subset-sum problem
takes as inputs a finite set S of positive integers and an integer farget t > 0. It
asks whether there exists a subset S’ € § whose elements sum to exactly ¢. For
example, if S = {1,2,7, 14,49, 98,343, 686,2409, 2793, 16808, 17206, 117705,
117993} and ¢t = 138457, then the subset S" = {1, 2,7, 98,343, 686, 2409, 17206,
117705} is a solution.

As usual, we express the problem as a language:

SUBSET-SUM = {(S, ) : there exists a subset S’ C S such thatt = ) ¢ s} .

As with any arithmetic problem, it is important to recall that our standard encoding
assumes that the input integers are coded in binary. With this assumption in mind,
we can show that the subset-sum problem is unlikely to have a fast algorithm.

Theorem 34.15
The subset-sum problem is NP-complete.

Proof To show that SUBSET-SUM € NP, for an instance (S, ) of the problem,
let the subset S’ be the certificate. A verification algorithm can check whether
t =) .cg s in polynomial time.

We now show that 3-CNF-SAT <p SUBSET-SUM. Given a 3-CNF formula ¢
over variables x1, X5, ..., X, with clauses Cy, Cs, ..., Cy, each containing exactly
three distinct literals, the reduction algorithm constructs an instance (S, ¢) of the
subset-sum problem such that ¢ is satisfiable if and only if there exists a subset
of § whose sum is exactly . Without loss of generality, we make two simplifying
assumptions about the formula ¢. First, no clause contains both a variable and its
negation, for such a clause is automatically satisfied by any assignment of values
to the variables. Second, each variable appears in at least one clause, because it
does not matter what value is assigned to a variable that appears in no clauses.

The reduction creates two numbers in set .S for each variable x; and two numbers
in S for each clause C;. The numbers will be represented in base 10, with each
number containing z + k digits and each digit corresponding to either one variable



34.5 NP-complete problems 1093

X1 x2 x3 C C C G

v; = 1 0 0 1 0 0 1
v, = 1 0 0 0 1 1 0
v, = 0 1 0 0 0 0 1
v, = 0 1 0 1 1 1 0
vy = 0 0 1 0 0 1 1
v, = 0 0 1 1 1 0 0
s1 = 0 0 0 1 0 0 0
s = 0 0 0 2 0 0 0
Sy = 0 0 0 0 1 0 0
S 0 0 0 0 2 0 0
S3 = 0 0 0 0 0 1 0
5 = 0 0 0 0 0 2 0
Sq = 0 0 0 0 0 0 1
S 0 0 0 0 0 0 2

t = 1 1 1 4 4 4 4

Figure 34.19 The reduction of 3-CNF-SAT to SUBSET-SUM. The formula in 3-CNF is ¢ =
C1 /\C2AC3 /\C4 ,where C1 = (x1 V—-va—-x:;), C2 = (—1x1 V—-xZV—-x:;), C3 = (—-x1 V—-vax:;),
and C4 = (X1 V x2 V x3). A satisfying assignment of ¢ is (x; = 0,x2 = 0,x3 = 1). The set
produced by the reduction consists of the base-10 numbers shown: reading from top to bottom, § =
{1001001, 1000110, 100001, 101110, 10011, 11100, 1000, 2000, 100, 200, 10, 20, 1,2 }. The target ¢
is 1114444, The subset §” C S is shaded blue, and it contains v}, v}, and v3, corresponding to the
satisfying assignment. Subset S’ also contains slack variables s1, 57,55 .53, 54, and s, to achieve the
target value of 4 in the digits labeled by C7 through Cyg.

or one clause. Base 10 (and other bases, as we shall see) has the property we need
of preventing carries from lower digits to higher digits.

As Figure 34.19 shows, we construct set .S and target ¢ as follows. Label each
digit position by either a variable or a clause. The least significant k digits are
labeled by the clauses, and the most significant n digits are labeled by variables.

* The target ¢ has a 1 in each digit labeled by a variable and a 4 in each digit
labeled by a clause.

* For each variable x;, set S contains two integers v; and v;. Each of v; and v;
has a 1 in the digit labeled by x; and Os in the other variable digits. If literal x;
appears in clause C;, then the digit labeled by C; in v; contains a 1. If lit-
eral —x; appears in clause Cj;, then the digit labeled by C; in v] contains a 1.
All other digits labeled by clauses in v; and v; are 0.



1094

Chapter 34  NP-Completeness

All v; and v; values in set S are unique. Why? For £ # i, no vy or v}, values can
equal v; and v/ in the most significant » digits. Furthermore, by our simplifying
assumptions above, no v; and v} can be equal in all k least significant digits. If
v; and v] were equal, then x; and —x; would have to appear in exactly the same
set of clauses. But we assume that no clause contains both x; and —x; and that
either x; or —x; appears in some clause, and so there must be some clause C;
for which v; and v] differ.

* For each clause Cj, set S contains two integers s; and s}. Each of s; and s} has
Os in all digits other than the one labeled by C;. For s;, there is a 1 in the C;
digit, and s} has a 2 in this digit. These integers are “slack variables,” which we
use to get each clause-labeled digit position to add to the target value of 4.

Simple inspection of Figure 34.19 demonstrates that all s; and s} values in S
are unique in set .S.

The greatest sum of digits in any one digit position is 6, which occurs in the
digits labeled by clauses (three 1s from the v; and v} values, plus 1 and 2 from the
s; and sj’. values). Interpreting these numbers in base 10, therefore, no carries can
occur from lower digits to higher digits.'?

The reduction can be performed in polynomial time. The set S consists of
2n + 2k values, each of which has n + k digits, and the time to produce each
digit is polynomial in n + k. The target ¢ has n + k digits, and the reduction
produces each in constant time.

Let’s now show that the 3-CNF formula ¢ is satisfiable if and only if there exists
a subset S’ € S whose sum is ¢. First, suppose that ¢ has a satisfying assignment.
Fori =1,2,...,n,if x; = 1 in this assignment, then include v; in §’. Otherwise,
include v}. In other words, S’ includes exactly the v; and v} values that correspond
to literals with the value 1 in the satisfying assignment. Having included either v;
or v}, but not both, for all i, and having put O in the digits labeled by variables
in all s; and 57, we see that for each variable-labeled digit, the sum of the values
of S must be 1, which matches those digits of the target . Because each clause
is satisfied, the clause contains some literal with the value 1. Therefore, each digit
labeled by a clause has at least one 1 contributed to its sum by a v; or v] value
in §’. In fact, one, two, or three literals may be 1 in each clause, and so each
clause-labeled digit has a sum of 1, 2, or 3 from the v; and v; values in S’. In
Figure 34.19 for example, literals —x;, —x,, and x3 have the value 1 in a satisfying
assignment. Each of clauses C; and C, contains exactly one of these literals, and
so together v}, v}, and v; contribute 1 to the sum in the digits for C; and C,.

12 1p fact, any base b > 7 works. The instance at the beginning of this subsection is the set S and
target ¢ in Figure 34.19 interpreted in base 7, with S listed in sorted order.



34.5 NP-complete problems 1095

Clause C, contains two of these literals, and v/, v}, and vs contribute 2 to the
sum in the digit for C,. Clause C; contains all three of these literals, and v}, v},
and v contribute 3 to the sum in the digit for C3. To achieve the target of 4 in each
digit labeled by clause C;, include in S’ the appropriate nonempty subset of slack
variables {s,-,s;-}. In Figure 34.19, S’ includes s1, 57, 85, §3, S4, and s,. Since S’
matches the target in all digits of the sum, and no carries can occur, the values of S’
sumtof.

Now suppose that some subset S’ € S sums to . The subset S’ must include
exactly one of v; and v; for eachi = 1,2,...,n, for otherwise the digits labeled
by variables would not sum to 1. If v; € S’, then set x; = 1. Otherwise, v; € S’,
and set x; = 0. We claim that every clause C;,for j = 1,2,...,k, is satisfied by
this assignment. To prove this claim, note that to achieve a sum of 4 in the digit
labeled by C;, the subset S’ must include at least one v; or v; value that has a 1
in the digit labeled by C;, since the contributions of the slack variables s; and s}
together sum to at most 3. If S’ includes a v; that has a 1 in C;’s position, then the
literal x; appears in clause C;. Since x; = 1 when v; € §’, clause C; is satisfied.
If §” includes a v that has a 1 in that position, then the literal —x; appears in C;.
Since x; = 0 when v; € §’, clause C; is again satisfied. Thus, all clauses of ¢ are
satisfied, which completes the proof. |

34.5.6 Reduction strategies

From the reductions in this section, you can see that no single strategy applies to
all NP-complete problems. Some reductions are straightforward, such as reducing
the hamiltonian-cycle problem to the traveling-salesperson problem. Others are
considerably more complicated. Here are a few things to keep in mind and some
strategies that you can often bring to bear.

Pitfalls

Make sure that you don’t get the reduction backward. That is, in trying to show
that problem Y is NP-complete, you might take a known NP-complete problem X
and give a polynomial-time reduction from Y to X. That is the wrong direction.
The reduction should be from X to Y, so that a solution to Y gives a solution to X .

Remember also that reducing a known NP-complete problem X to a problem Y
does not in itself prove that Y is NP-complete. It proves that Y is NP-hard. In
order to show that Y is NP-complete, you additionally need to prove that it’s in NP
by showing how to verify a certificate for ¥ in polynomial time.



