# **DECISION TREE: CART and C4.5**

When to use GINI INDEX and when to use GINI RATIO?

Prepared by Sanjiban S Roy, 5th Aug, 2025

## Decision Tree Attribute Selection Measures – Full Tutorial

# **\*** Introduction

When building a decision tree, the most critical step is selecting the attribute that best splits the data at each node. The quality of a split is measured using various mathematical criteria:

- ID3 uses Information Gain
- C4.5 uses Gain Ratio
- CART uses Gini Index

Let's go through each method in depth with the **formulas and a worked example** using the AllElectronics dataset.

## **NOTICE** FORMULAS FIRST

1. Information Gain (used in ID3)

Entropy (S):

$$Entropy(S) = -\sum_{i=1}^{c} p_i \log_2(p_i)$$

Where:

•  $p_i$ : proportion of class i in set S

• C: number of classes

Information Gain (IG):

$$Gain(S,A) = Entropy(S) - \sum_{v \in Values(A)} \frac{\mid S_v \mid}{\mid S \mid} \cdot Entropy(S_v)$$

Where:

- A: attribute
- $S_v$ : subset of S for which attribute A = v

# • 2. Gain Ratio (used in C4.5)

Split Info:

$$SplitInfo(S,A) = -\sum_{v \in Values(A)} \frac{\mid S_v \mid}{\mid S \mid} \cdot \log_2(\frac{\mid S_v \mid}{\mid S \mid})$$

**Gain Ratio:** 

$$GainRatio(S, A) = \frac{Gain(S, A)}{SplitInfo(S, A)}$$

# 3. Gini Index (used in CART)

**Gini Impurity:** 

$$Gini(S) = 1 - \sum_{i=1}^{c} p_i^2$$

Gini Index for a Split:

$$Gini_{split}(A) = \sum_{v \in Values(A)} \frac{1 |S_v|}{|S|} \cdot Gini(S_v)$$

# Dataset: AllElectronics

We'll use this subset for simplicity:

| ID | Age         | Buys_computer |  |
|----|-------------|---------------|--|
| 1  | youth       | no            |  |
| 2  | youth       | no            |  |
| 3  | middle-aged | yes           |  |
| 4  | senior      | yes           |  |
| 5  | senior      | yes           |  |
| 6  | senior      | no            |  |
| 7  | middle-aged | yes           |  |
| 8  | youth       | no            |  |
| 9  | youth       | yes           |  |
| 10 | senior yes  |               |  |
| 11 | youth       | yes           |  |
| 12 | middle-aged | yes           |  |
| 13 | middle-aged | yes           |  |
| 14 | senior      | no            |  |

- Total records: 14
- Yes = 9
- No = 5

Prepared by Sanjiban S Roy, 5th Aug, 2025



Values = {**youth**, **middle-aged**, **senior**}

# ◆ 1. Information Gain (ID3)

#### **Step 1: Calculate Entropy(S)**

$$Entropy(S) = -\left(\frac{9}{14}\log_2\frac{9}{14} + \frac{5}{14}\log_2\frac{5}{14}\right)$$
$$= -\left(0.6439 \cdot \log_2(0.6439) + 0.3571 \cdot \log_2(0.3571)\right) = 0.940$$

#### **Step 2: Compute Entropy for Age values**

• Youth (5 samples): 2 Yes, 3 No

Entropy = 
$$-(\frac{2}{5}\log_2\frac{2}{5} + \frac{3}{5}\log_2\frac{3}{5}) = 0.971$$

Middle-aged (4 samples): 4 Yes, 0 No

$$Entropy = 0$$

Senior (5 samples): 3 Yes, 2 No

Entropy = 
$$-(\frac{3}{5}\log_2\frac{3}{5} + \frac{2}{5}\log_2\frac{2}{5}) = 0.971$$

#### **Step 3: Information Gain**

$$Gain(S, Age) = 0.940 - (\frac{5}{14} \cdot 0.971 + \frac{4}{14} \cdot 0 + \frac{5}{14} \cdot 0.971)$$
$$= 0.940 - (0.3475 + 0 + 0.3475) = 0.940 - 0.695 = 0.245$$

✓ Information Gain (Age) = 0.245

# ◆ 2. Gain Ratio (C4.5)

$$SplitInfo(Age) = -\left(\frac{5}{14}\log_2\frac{5}{14} + \frac{4}{14}\log_2\frac{4}{14} + \frac{5}{14}\log_2\frac{5}{14}\right)$$

$$= -\left(0.357 \cdot (-1.485) + 0.286 \cdot (-1.807) + 0.357 \cdot (-1.485)\right) = 1.577$$

$$GainRatio(Age) = \frac{0.245}{1.577} = 0.155$$

### 3. Gini Index (CART)

Now evaluate the **best binary split**, e.g.,

Split: {youth, senior} and {middle-aged}

• Group 1 (youth + senior): 10 samples  $\rightarrow$  5 Yes, 5 No

$$Gini = 1 - (0.5^2 + 0.5^2) = 0.5$$

• Group 2 (middle-aged): 4 samples → 4 Yes, 0 No

$$Gini = 0$$

Weighted Gini:

$$Gini_{split} = \frac{10}{14} \cdot 0.5 + \frac{4}{14} \cdot 0 = 0.357$$

☑ Gini Index for best split on Age = 0.357

# Summary Table

| Attribute | Info Gain (ID3) | Gain Ratio (C4.5) | Gini Index (CART) |
|-----------|-----------------|-------------------|-------------------|
| Age       | 0.245           | 0.155             | 0.357             |

- Use ID3 when you want pure entropy-based selection.
- **Use C4.5** when you want to avoid bias toward attributes with many values (uses Gain Ratio).
- Use CART when building binary trees (uses Gini Index and binary splits).

