
✅ Logistic Regression Exercise

Problem Statement

A company wants to predict whether a user will buy a product based on their age
and salary. The dataset has the following information for 10 users:

User Age (X₁) Salary (in $K) (X₂) Bought (Y)

1 22 35 0

2 25 45 0

3 47 80 1

4 52 110 1

5 46 85 1

6 56 100 1

7 28 40 0

8 35 60 1

9 42 65 1

10 29 50 0

Q1: Write the logistic regression hypothesis function.

✅ Solution:
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The hypothesis for logistic regression is:

Where:

 are model parameters

Q2: Using initial parameters , , and , compute
the predicted probability of user 1 buying the product.

✅ Solution:
User 1: Age = 22, Salary = 35
Apply the formula:

Predicted probability = 4.74%
Since it's < 0.5, predicted class = 0

Q3: Derive the cost function for logistic regression.

✅ Solution:
The log-loss (cost) function is:

Where:

 = number of training examples
 = true label

 = predicted probability

h ​(x) =θ ​

1 + e−(θ ​+θ ​x ​+θ ​x ​)0 1 1 2 2

1

x ​ =1 Age
x ​ =2 Salary
θ ​, θ ​, θ ​0 1 2

θ ​ =0 −8 θ ​ =1 0.1 θ ​ =2 0.08

z = −8 + 0.1 × 22 + 0.08 × 35 = −8 + 2.2 + 2.8 = −3

h(x) = =1 + e−(−3)
1

​ ≈1 + e3
1

​ ≈1 + 20.0855
1 0.0474

J (θ) = − ​ ​ y log(h ​(x )) + (1 − y ) log(1 − h ​(x ))m
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Q4: Implement gradient descent update rules for logistic regression.

✅ Solution:
For each parameter , the update rule is:

Where:

 = learning rate
 (bias term)

Q5: Perform one step of gradient descent for θ₀, θ₁, θ₂ using only user 1's
data (stochastic gradient descent), learning rate = 0.01

✅ Solution:
From Q2, we got:

Compute gradients:

Updated θ values:

Q6: Suppose after training, the model gives the following probabilities
for some users. Predict class using a threshold of 0.5.

θ ​j

θ ​ :=j θ ​ −j α ⋅ ​ ​(h ​(x ) −m
1

i=1
∑
m

θ
(i) y ) ⋅(i) x ​j

(i)

α
x ​ =0

(i) 1

h(x ) =(1) 0.0474
y =(1) 0
(x ​, x ​, x ​) =0 1 2 (1, 22, 35)

Error = h(x) − y = 0.0474 − 0 = 0.0474

θ ​ :=0 θ ​ −0 0.01 ⋅ 0.0474 = −8 − 0.000474 = −8.000474

θ ​ :=1 θ ​ −1 0.01 ⋅ 0.0474 ⋅ 22 = 0.1 − 0.010428 = 0.089572

θ ​ :=2 θ ​ −2 0.01 ⋅ 0.0474 ⋅ 35 = 0.08 − 0.01659 = 0.06341

θ ​ =0 −8.000474
θ ​ =1 0.089572
θ ​ =2 0.06341
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User Probability

A 0.75

B 0.33

C 0.58

D 0.48

✅ Solution:
Using 0.5 as threshold:

A → 1
B → 0
C → 1
D → 0

Predicted classes: [1, 0, 1, 0]

Q7: Explain why logistic regression is preferred over linear regression for
classification.

✅ Solution:
Linear regression outputs continuous values and is unbounded.
Logistic regression outputs values in the range , suitable for probabilities.
Logistic regression models the log-odds, making it interpretable in terms of
probability.

[0, 1]
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✅ Logistic Regression: Simple Example

📘 Problem Statement

You are given data about students who studied for a certain number of hours and
whether they passed (1) or failed (0) an exam. You want to predict if a student will
pass or fail based on the number of hours they studied using logistic regression.

📊 Data Table
Student Hours Studied (X) Passed (Y)

1 1 0

2 2 0

3 3 0

4 4 1

5 5 1

6 6 1

🔢 Step-by-Step Solution

Step 1: Logistic Hypothesis

Let’s assume:
, 

h ​(x) =θ ​

1 + e−(θ ​+θ ​x)0 1

1

θ ​ =0 −4.5 θ ​ =1 1
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Step 2: Predict for X = 3 (3 hours of study)

➡️ Probability of passing = 18.24%

Predicted Class = 0 (Fail)

Step 3: Predict for X = 5 (5 hours of study)

➡️ Probability of passing = 62.25%

Predicted Class = 1 (Pass)

✅ Summary

Hours Studied
Predicted
Probability Predicted Class

3 18.24% 0 (Fail)

5 62.25% 1 (Pass)

z = θ ​ +0 θ ​x =1 −4.5 + 1 ⋅ 3 = −1.5

h ​(3) =θ ​ ≈1 + e1.5
1

​ ≈1 + 4.4817
1 0.1824

z = −4.5 + 1 ⋅ 5 = 0.5

h ​(5) =θ ​ ≈1 + e−0.5
1

​ ≈1 + 0.6065
1 0.6225
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✅ Python Code: Logistic Regression with One Predictor

python

import numpy as np
import matplotlib.pyplot as plt

# Data
X = np.array([1, 2, 3, 4, 5, 6])      # Hours Studied
Y = np.array([0, 0, 0, 1, 1, 1])      # Pass (1) / Fail (0)

# Hypothesis function
def sigmoid(z):
    return 1 / (1 + np.exp(-z))

# Assume model parameters
theta_0 = -4.5
theta_1 = 1

# Predict function
def predict(x):
    z = theta_0 + theta_1 * x
    return sigmoid(z)

# Generate values for plotting
x_vals = np.linspace(0, 7, 100)
y_vals = predict(x_vals)

# Plotting
plt.figure(figsize=(8, 5))
plt.plot(x_vals, y_vals, label='Logistic Regression Curve', color='blue')
plt.scatter(X, Y, color='red', label='Actual Data')
plt.axhline(0.5, color='gray', linestyle='--', label='Decision Boundary (0.5)')
plt.title('Logistic Regression: Hours Studied vs Pass Probability')
plt.xlabel('Hours Studied')
plt.ylabel('Probability of Passing')
plt.legend()
plt.grid(True)
plt.show()
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✅ What This Code Does:
Implements the logistic hypothesis 

Assumes fixed parameters , 
Plots:

The sigmoid (logistic) curve
The original data points (red dots)
The decision threshold (0.5 line)

h(x) = ​1+e−(θ ​+θ ​x)0 1
1

θ ​ =0 −4.5 θ ​ =1 1

✅ Exercise 1

Data:

Hours Studied (X) Passed (Y)

1 0

2 0

3 0

4 1

5 1

Question:
Given the logistic regression model:

h(x) = ​1 + e−(−4+1.2x)
1
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What is the predicted probability and class for a student who studied for 3.5 hours?

Answer:

Predicted probability = 54.98%
Predicted class = 1 (Pass)

✅ Exercise 2

Data:

Hours Slept (X) Exam Passed (Y)

2 0

4 0

6 1

8 1

Question:
Using the logistic regression model:

What is the predicted probability and class for a person who slept 5 hours?

Answer:

Predicted probability = 26.89%
Predicted class = 0 (Fail)

z = −4 + 1.2 ⋅ 3.5 = 0.2
h(3.5) = ​ ≈1+e−0.2

1 0.5498

h(x) = ​

1 + e−(−6+1x)
1

z = −6 + 1 ⋅ 5 = −1
h(5) = ​ ≈1+e1

1 0.2689
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