
📘 Title: Logistic Regression Explained — Based on Cox’s 1958
Foundational Paper

🔰 Objective
To understand how to analyze binary outcomes (like success/failure) in relation to
one or more predictors using a model that ensures predicted probabilities remain
between 0 and 1.

🧩 Prerequisite Concepts
Binary variable: Variable that takes on only two values (e.g., 0 = failure, 1 =
success).
Regression: Explains a dependent variable using one or more independent
variables.
Odds: Ratio of probability of success to failure, .

Logit function: , maps probabilities (0,1) to real numbers.

📚 The Core Idea
Suppose we observe sequences of binary outcomes (e.g., success/failure). Cox
introduced a model to estimate how the probability of success varies with
predictors, like time, age, treatment, etc.

🔑 Key Model

: probability of success for observation 
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: predictor variable
: intercept (nuisance parameter)
: slope (our main interest)

This is the logistic regression model, ensuring:

Output is always a valid probability
Relationship between predictors and probability is nonlinear but interpretable

📌 Why Linear Models Fail Here
A linear model like  can produce  or , which makes no sense
for probabilities. The logistic model avoids this by using the logit transformation.

🛠 How Cox Approaches Estimation

Step 1: Binary Sequences

We observe a set of binary outcomes:

with corresponding covariates:

Step 2: Likelihood Function

The joint likelihood under independence:

This simplifies to:

🧪 Hypothesis Testing and Inference

Goal:

Test whether  (no relationship between outcome and predictor).

Approach:

Use conditional inference:

Treat the total number of successes  as fixed.
Focus on the distribution of the test statistic  given .

This leads to a hypergeometric-like model under the null hypothesis and helps
eliminate nuisance parameter .

🧮 Approximate Solutions
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Cox derived approximations for small or large samples:

Normal approximation for test statistic 
Cumulant expansions to estimate mean/variance under logistic alternatives

📊 Practical Example (2×2 Table)
Suppose we have:

Success (1) Failure (0)

Group A 3 11

Group B 60 32

This becomes a logistic regression problem with group indicator as predictor. The
odds ratio:

Cox shows how to compute confidence intervals for , which leads to CI for the odds
ratio, and compares them with exact and approximate methods.

🧠 Extensions Covered by Cox

1. Multiple Predictors

2. Markov Dependence
Probability of success depends on outcome of previous trial:

3. Learning Effect / Cumulative Scores
Let success depend on number of past successes:

🧾 Significance of Cox’s Work
First general formulation of logistic regression.
Established the likelihood approach for binary outcomes.
Demonstrated that non-parametric tests (e.g., Wilcoxon) align with logistic
assumptions.
Introduced concepts that predate modern GLMs (Generalized Linear Models).

🧰 Tools & Techniques Cox Introduced
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Technique Description

Logistic law Ensures probability lies in (0,1)

Conditional
inference

Eliminates nuisance
parameters

Cumulant
expansions

Approximates distribution of
test statistics

Sampling without
replacement

Basis for exact tests

Multiple regression
on logits

Extension to multiple variables

✅ Summary Table
Concept Summary

Model

Target Estimate/test effect of  on
binary 

Estimator Maximum likelihood /
conditional method

Testing Conditional on total ; uses
distribution of 

Assumptions Independence, binary
outcome

Extensions Markov dependence,
cumulative response, multiple
predictors

🧠 Final Thoughts
Cox’s 1958 paper didn’t just invent logistic regression—it provided a complete
statistical framework for analyzing binary outcomes with covariates. It's robust,
interpretable, and foundational to modern machine learning and statistics.
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