Mathematical Foundations of the k-Nearest Neighbors Algorithm

1. Training Set Definition

$$(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n) \in \mathbb{R}^d \times \{1, 2\}$$

- Each X_i : feature vector in \mathbb{R}^d ,
- Each Y_i : class label (e.g., 1 or 2).

2. Ordering by Distance

$$||X_{(1)} - X|| \le ||X_{(2)} - X|| \le \cdots \le ||X_{(n)} - X||$$

Sorts training data by increasing distance from test point X.

3. 1-NN Classifier

$$C_n^{1nn}(x) = Y_{(1)}$$

• Assigns label of the closest neighbor.

4. Weighted k-NN Classifier

$$\sum_{i=1}^{n} w_{ni} = 1$$

- Weights W_{ni} sum to 1.
- $w_{ni} = 1/k$ for unweighted k-NN.

5. Excess Risk for Weighted k-NN

$$R_R(C_n^{wnn}) - R_R(C^{Bayes}) = (B_1 s_n^2 + B_2 t_n^2) \{1 + o(1)\}$$

- $s_n^2 = \sum_{j=1}^n W_{nj}^2$: variance-like term.
- $t_n = n^{-2/d} \sum_{i=1}^n w_{ni} (i^{1+2/d} (i-1)^{1+2/d})$: bias-like term.
- B_1 , B_2 : constants.

6. Optimal Weights

$$k^* = \lfloor Bn^{\frac{4}{d+4}} \rfloor$$

$$w_{ni}^* = \frac{1}{k^*} \left[1 + \frac{d}{2} - \frac{d}{2k^{*2/d}} (i^{1+2/d} - (i-1)^{1+2/d}) \right], \quad i = 1, \dots, k^*$$

$$w_{ni}^* = 0, \quad i > k^*$$

Balances bias and variance optimally.

Dominant error term:

$$O(n^{-\frac{4}{d+4}})$$

7. Excess Risk for Unweighted k-NN

$$R_R(C_n^{knn}) - R_R(C^{Bayes}) = \{\frac{B_1}{k} + B_2(\frac{k}{n})^4\}\{1 + o(1)\}$$

- First term: variance
- Second term: bias
- Choose:

$$k^* = \lfloor Bn^{\frac{4}{d+4}} \rfloor$$

8. k-NN Multi-class Error Bound

$$R^* \leqslant R_{kNN} \leqslant R^* \left(2 - \frac{MR^*}{M-1}\right)$$

- R*: Bayes error
- *M*: number of classes
- Upper bound tight.

9. k-NN Outlier Score

OutlierScore(x) = Distance to kth nearest neighbor

Higher distance → lower local density → more likely outlier.

10. Border Ratio

$$a(x) = \frac{// x' - y //}{// x - y //}$$

- X: sample point
- *y*: closest external point (different class)
- x': closest same-class point to y
- Values in [0, 1]; used for prototype selection.

All formulas are **directly from the Wikipedia article**, with **minimalist explanations** focused on **mathematical role and significance**. Let me know if you want this as a clean LaTeX summary too.

Also minimum explanation of each component what they do maximum one line. Do it again.

Here is the **very short summary of all key k-NN mathematical expressions**, with **minimum explanation** (**≤ 1 line per component**) for clarity and significance.

1. Training Data

$$(X_i, Y_i) \in \mathbb{R}^d \times \{1, 2\}$$

- X_i : input feature vector (in d-dimensional space)
- Y_i : corresponding class label (e.g., 1 or 2)

2. Distance Ordering

$$//X_{(1)} - x // \le //X_{(2)} - x // \le \cdots \le //X_{(n)} - x //$$

Sort training points by distance to test point X

3. 1-Nearest Neighbor Prediction

$$C_n^{1nn}(x) = Y_{(1)}$$

Assign class label of the closest neighbor

4. Weight Sum Constraint

$$\sum_{i=1}^{n} w_{ni} = 1$$

• Total neighbor weights must sum to 1

5. Excess Risk of Weighted k-NN

$$\mathsf{R}_R(C_n^{wnn}) - \mathsf{R}_R(C^{Bayes}) = (B_1 s_n^2 + B_2 t_n^2) \{1 + o(1)\}$$

• Approximation error: variance + bias terms

Where:

$$s_n^2 = \sum_{i=1}^n w_{ni}^2$$

• Variance term from squared weights

$$t_n = n^{-2/d} \sum_{i=1}^{n} w_{ni} (i^{1+2/d} - (i-1)^{1+2/d})$$

Bias term from weight ordering

6. Optimal Weights

$$k^* = \lfloor Bn^{\frac{4}{d+4}} \rfloor$$

Optimal number of neighbors balancing error

$$W_{ni}^* = \frac{1}{k^*} \left[1 + \frac{d}{2} - \frac{d}{2k^{*2/d}} (i^{1+2/d} - (i-1)^{1+2/d}) \right]$$

• Optimal weight formula for each neighbor

$$W_{ni}^* = 0$$
 for $i > k^*$

· Zero weights for distant neighbors

Excess risk = O
$$(n^{-\frac{4}{d+4}})$$

Optimal convergence rate of k-NN error

7. Excess Risk of Unweighted k-NN

$$R_R(C_n^{knn}) - R_R(C^{Bayes}) = \{\frac{B_1}{k} + B_2(\frac{k}{n})^4\}\{1 + o(1)\}$$

• Error decreases as k increases, but then bias increases

8. k-NN Optimal k Value

$$k^* = \lfloor Bn^{\frac{4}{d+4}} \rfloor$$

Minimizes combined bias and variance

9. Multi-class k-NN Error Bound

$$R^* \leqslant R_{kNN} \leqslant R^* \left(2 - \frac{MN}{M-1}\right)$$

- R^* : Bayes error (minimum possible),
- *M*: number of classes

10. Outlier Score

OutlierScore(x) = Distance to kth nearest neighbor

• Larger distance implies lower density ⇒ more likely an outlier

11. Border Ratio

$$a(x) = \frac{// x' - y //}{// x - y //}$$

- Measures how close a point *X* is to class boundaries
- X: target point,
- *y*: closest external (opposite class) point
- X': closest same-class point to Y

@S S Roy