@S S Roy,13th Aug,25

Simple Neural Nets : Perceptron

Ref : Fausett’'s Fundamentals of Neural Networks (1994).

1) What is a perceptron?

A (binary) perceptron is a linear classifier that maps an input vector X & R% to a
class label y € {1, +1} using:

e Weighted sum (net input):

a=w'x+b
e Hard-threshold activation:
: +1 ifa=0
=sign(a) =
ysign@ =4 yeg <o

Here w € R is the weight vector and b € R is the bias. Many expositions
(including Fausett) absorb the bias by augmenting X with a constant 1: X =
[1,X1,....Xq]" and W = [b, W1, ..., Wy4]T,soa = W'X.

2) Learning rule (Perceptron update)

Given a training set {(x\", t(i))}f-\i1 with targets t) € {-1, +1}, we iterate over

examples and update only when the current example is misclassified:
o Prediction:) = sign(w'x" + b)
o I1f PO 8¢ update:

wew+ntdx?, p—pb+nt?
Equivalently (augmented form): W < W + 1 tx0,

n > 0O is the learning rate (often) = 1). This rule nudges the decision boundary

toward correctly classifying the offending point.

1/7

2/7

3) Worked Example A (fully detailed): Learning the OR
function

We'll learn the Boolean OR with inputs in {0, 1} and targets in {-1, +1}:

X1 | X2 | OR| ¢t
0O|0]| O |1
011 1 | +1
110 T | +1
111 T | +1
@S S Roy
Use the augmented form X = [1, X1, x21, W = [b, w1, w>]. 2025

Initialize W(® = [0, 0, 0], learning rate) = 1.

Epoch 1 (go through all four patterns in order)
1. Example (x = (0,0),t=-1)
x=11,0,0].
Netinputa = w®-X=0-1+0-0+0-0=0.
Prediction y = sign(0) = +1.
Misclassified (want —1). Update:

~

W =w® +ntx=10,0,01+1-(-1)-[1,0,0] =[-1,0,0l.
2. Example (x =(0,1),t = +1)

Xx=1[1,0,11.

a=(-1)-1+0-0+0-1=-1.

p=sign(-1) = =1 — misclassified. Update:

wt? =[-1,0,0]+1-(+1)-[1,0,11 =0, 0, 11.

3. Example (x =(1,0),t = +1)

x=1[1,1,0].

a=0-1+0-1+1-0=0.

= +1 - correct. No update: W3 = [0, 0, 1].
4. Example (x =(1,1),t=+1)

x=1[1,1,1].

a=0-1+0-1+1-1=1.

P =+1 - correct. No update: W4 = [0, 0, 1].

Check convergence (another pass)

Run through the four again with w = [0, 0, 11:

3/7

e (0,0:0=0-14+0-0+1-0=0= p=+1 (but should be —1). Misclassified.
Update: w < [0, 0, 11+ (-1)[1,0,0] =[-1, 0, 1].

Now test all with w = [-1, 0, 1]:

e (0,0):a=(-1)-1+0+0=-1=p=-1=correct.

e (0,1):a=(-1)-1+0+1-1=0= p=+1 =correct.

e (1,0:a=(-1)-1+0-1+1-0=-1= p=-1(should be +1) —

misclassified.

Update on (1,0): W < [-1,0, 11+ (+1)[1,1,0] = [0, 1, 1]. @252503/

Re-check all with w = [0, 1, 1]:

e (0,0:0=0-1+1-0+1-0=0= p=+1 (needs —1) — misclassified.
Update: [0, 1,11 +(-1)[1,0,0] = [-1,1,1].

Final testwithw =[-1, 1, 11

e (0,0:0=-1+0+0=-1=>-1v

e (0,1):a==-1+0+1=0=>+1v

e (1,0):0=-1+1+0=0=>+1v
(1,1):a=-1+1+1=1=2>+1v

Converged with decision function } = sign(—1 + x1 + X2). Geometrically, this is the
half-space above the line X1 + x = 1.

4) Worked Example B: A 2D, real-valued, linearly
separable set

Training set (two classes):
e Positive(t=+1):(2,1), (2,3), (3,2)
e Negative (t = -1):(0,-1), (-1,-2), (—2 -1)

Augment with bias: X = [1, X1, X2]. start W(¥) = [0, 0, 0], n=1.
Pass 1

2,1),t=+1:0=0= p=+1 - correct, no update.
2,3),t=+1.0=0= p=+1 - correct, no update.
3,2),t=+1:0=0= p=+1 - correct, no update.
=-1),t=-1:a0=0= p=+1 (wrong).
Update: w = [0,0,0] + (-1)[1,0,-1]1 = [-1,0, 1].
5 (-1,-2),t=-1a=(-1)1+0-(-1)+1-(-2)=-3=2p=-1v
6. (=2,-1),t=-1a=(-1)-140-(=2)+1-(-1)="72=2p=-1v

(
(
(
(O,

W bh =

Pass 2 (verify all): with w = [-1, 0, 1]

e (2,1):0=-14+0-2+1-1=0=2+1v

e (2,3)a=-1+0-2+1:-3=2=>+1V

e (3,2:0=-14+0-3+1-2=1=2+1v

* Negatives remain correctly classified as above.

Converged. Decision boundary: =1+ 0 - X1 + 1 - X, = 0i.e, X = 1. Everything with

X = 1is classified +1; else —1. (Satisfies the listed samples.)

5) When (and why) the perceptron fails: XOR (In below you can

: , seethis) .
Perceptrons can only separate linearly separable data. The classic counterexamgle is
XOR:

X1 | X2 | XOR | ¢t
0|0 0 |[-1
011 1 +1
110 1 +1
111 0 |[-1

No single straight line can separate positives (0, 1), (1, 0) from negatives
(0,0), (1, 1). The perceptron learning rule will keep cycling among weight vectors
without convergence (updates continue indefinitely or until you stop), which

motivates multi-layer networks with nonlinear activations.

6) Perceptron Convergence Theorem (intuition)

If the training set is linearly separable, the perceptron algorithm converges in a
finite number of updates to a solution that correctly classifies all training points.
High-level intuition (omitting a full formal proof here, but included conceptually in

standard texts like Fausett):

e Assume there exists a separating hyperplane with margin y > O and a separator
w\" with 7/ w"* /7 =1 such that t) (w*Tx") = y for all /.

e Each mistake update increases the projection of the current weight onto w\" by
at least y, while the weight norm grows at most with the square root of the
number of mistakes.

e Combining upper and lower bounds implies a finite bound on total mistakes
M < (5)2, where R = max; # x) // . Thus, convergence occurs after finitely

many updates.

7) Multiclass classification with perceptrons

a4/7

5/7

A common approach: one-vs-rest (OVR).

« Train K separate perceptrons, one for each class K, using targets ty = +1 for
class k and —1 for all others.
e Atinference, compute all scores gy = W,IX + by and pick arg max a.

Each perceptron uses the same update rule shown earlier, applied to its own

relabeled data. For linearly separable OvR problems, each binary task can converge.

8) Practical details & tips

e Feature scaling helps the algorithm move more steadily (big features can
dominate the dot-product).

e Learning rate 1]: any positive value works;) = 1 is common since the
perceptron uses a sign loss (no smooth gradient).

e Shuffling the data each epoch can avoid cyclic visiting patterns.

e Stopping: stop after an epoch with zero mistakes, or after a preset max-epochs

(if data is nonseparable).

9) A final mini-exercise (with full calculations)

Try learning the AND function:

(X1,X) | t
(0,0) | -1
0,1 |-1| X=1[1,x,x] w9 =1[0,0,0], n=1.
(1,0) | -1
(1,1) | +1

Epoch 1

1. (0,0),t=-1:0=0= p=+1 - wrong.
Update: [0, 0, 0] + (-1)[1,0,0] =[-1, 0, 0]

2. 0,1),t=-1:a=(-1)-1+0+0=-1=2-1v

3. (1,0),t=-1.a=(-1)-1+0+0=-1=2>-1v

4. (1,1),t=+1:a=(-1)-1+0-1+0-1=-1= -1 - wrong.
Update: [-1,0,0]+ (+1)[1,1,1]1 =[O0, 1, 1].

Epoch 2 (check all) with w = [0, 1, 1]

e (0,0):a=0= +1 (needs —1) = wrong.
Update: [0, 1,11+ (-1)[1,0,0] = [-1,1,1].

e (0,1):0=-1+0+1=0= +1 (needs —1) — wrong.
Update: [-1, 1,11+ (-1)[1,0,1]1 =[-2,1,0].

e (1,0:0=-2+1+0=-1=2-1v
e (1,1):a=-2+1+0=-1= -1 (needs +1) = wrong.
Update: [-2, 1,01+ (+1)[1,1,1]1 =[-1, 2, 1].
Epoch 3 (verify) with w = [-1, 2, 1]
e (0,0a=-1=2-1v
e (0,1:a0=-1+0+1=0= +1 (needs —1)— wrong.
Update: [-1,2, 1]+ (=1)[1,0,1]1 = [-2, 2, 0].
e (1,0:0=-2+2+0=0= +1 (needs —1) — wrong.
Update: [-2,2,0]+ (-1)[1,1,0] =[-3, 1, 0].
e (1,1):0=-3+1+0=-2= -1 (needs +1) = wrong.
Update: [-3,1,0]+ (+1)[1,1,1]1 =[-2, 2, 1].
Epoch 4 (check) with w = [-2, 2, 1]
e (0,0:2=-1v
e (0,1):2+0+1=-1=2-1v
e (1,0):=2+2+0=0= +1 (needs —1) = wrong.
Update: [-2,2, 1]+ (-1)[1,1,0] =[-3,1,1].
e (1,1):-3+1+1=-1= -1 (needs +1) = wrong.
Update: [-3,1, 1]+ (+1)[1,1,1]1 = [-2, 2, 2].
Epoch 5 (final check) with w = [-2, 2, 2]
e (0,0:2=-1v
e (0,1):-2+0+2=0= +1 (needs —1) — wrong.
Update: [-2,2, 2]+ (-1)[1,0,1]1=[-3,2,1].
e (1,0):=3+2+4+0=-1=2-1v
e (1,1):-3+2+1=0=>+1v

Now all four are correct with w = [-3, 2, 1], i.e.
y‘= Sign(—3 + 2X1 + X3),

which classifies only (1, 1) as +1 and the others as —1, matching AND. (Different

training orders can converge faster; perceptron solutions are not unique.)

this page intentionally left blank

717

