
Ref : Fausett’s Fundamentals of Neural Networks (1994). 

1) What is a perceptron?
A (binary) perceptron is a linear classifier that maps an input vector  to a
class label  using:

Weighted sum (net input):

Hard-threshold activation:

Here  is the weight vector and  is the bias. Many expositions
(including Fausett) absorb the bias by augmenting  with a constant 1: 

 and , so . 

2) Learning rule (Perceptron update)
Given a training set  with targets , we iterate over
examples and update only when the current example is misclassified:

Prediction: 
If , update:

Equivalently (augmented form): .

 is the learning rate (often ). This rule nudges the decision boundary
toward correctly classifying the offending point. 

x ∈ Rd

y ∈ {−1, +1}

a = w x +⊤ b

​ =ŷ sign(a) = ​ ​{+1
−1

if a ≥ 0
if a < 0

w ∈ Rd b ∈ R
x =x~

[1, x ​, … , x ​]1 d
⊤ =w~ [b, w ​, … , w ​]1 d

⊤ a = w~⊤x~

{(x , t )} ​

(i) (i)
i=1
N t ∈(i) {−1, +1}

​ =ŷ(i) sign(w x +⊤ (i) b)
​ =ŷ(i)  t(i)

w ← w + η t x , b ←(i) (i) b + η t(i)

←w~ +w~ η t(i)x~(i)

η > 0 η = 1
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3) Worked Example A (fully detailed): Learning the OR
function
We’ll learn the Boolean OR with inputs in  and targets in :

Use the augmented form , .
Initialize , learning rate .

Epoch 1 (go through all four patterns in order)
1. Example 

.
Net input .
Prediction .
Misclassified (want ). Update:

2. Example 
.

.
 → misclassified. Update:

3. Example 
.

.
 → correct. No update: .

4. Example 
.

.
 → correct. No update: .

Check convergence (another pass)

Run through the four again with :

{0, 1}2 {−1, +1}

​​ ​ ​ ​

x ​1
0
0
1
1

x ​2
0
1
0
1

OR
0
1
1
1

t
−1
+1
+1
+1

=x~ [1, x ​, x ​]1 2 =w~ [b, w ​, w ​]1 2

=w~(0) [0, 0, 0] η = 1

(x = (0, 0), t = −1)
=x~ [1, 0, 0]

a = ⋅w~(0) =x~ 0 ⋅ 1 + 0 ⋅ 0 + 0 ⋅ 0 = 0
​ =ŷ sign(0) = +1

−1

=w~(1) +w~(0) η t =x~ [0, 0, 0] + 1 ⋅ (−1) ⋅ [1, 0, 0] = [−1, 0, 0].
(x = (0, 1), t = +1)

=x~ [1, 0, 1]
a = (−1) ⋅ 1 + 0 ⋅ 0 + 0 ⋅ 1 = −1

​ =ŷ sign(−1) = −1

=w~(2) [−1, 0, 0] + 1 ⋅ (+1) ⋅ [1, 0, 1] = [0, 0, 1].
(x = (1, 0), t = +1)

=x~ [1, 1, 0]
a = 0 ⋅ 1 + 0 ⋅ 1 + 1 ⋅ 0 = 0

​ =ŷ +1 =w~(3) [0, 0, 1]
(x = (1, 1), t = +1)

=x~ [1, 1, 1]
a = 0 ⋅ 1 + 0 ⋅ 1 + 1 ⋅ 1 = 1

​ =ŷ +1 =w~(4) [0, 0, 1]

=w~ [0, 0, 1]
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:  (but should be ). Misclassified.
Update: 

Now test all with :

:  correct.
:  correct.
:  (should be +1) →

misclassified.
Update on : 

Re-check all with :

:  (needs ) → misclassified.
Update: 

Final test with :

:  ✓
:  ✓
:  ✓
:  ✓

Converged with decision function . Geometrically, this is the
half-space above the line . 

4) Worked Example B: A 2D, real-valued, linearly
separable set
Training set (two classes):

Positive ( ): 
Negative ( ): 

Augment with bias: . Start , .

Pass 1

1. :  → correct, no update.
2. :  → correct, no update.
3. :  → correct, no update.
4. :  (wrong).

Update: .
5. :  ✓
6. :  ✓

(0, 0) a = 0 ⋅ 1 + 0 ⋅ 0 + 1 ⋅ 0 = 0 ⇒ ​ =ŷ +1 −1
←w~ [0, 0, 1] + (−1)[1, 0, 0] = [−1, 0, 1].

=w~ [−1, 0, 1]
(0, 0) a = (−1) ⋅ 1 + 0 + 0 = −1 ⇒ ​ =ŷ −1 =
(0, 1) a = (−1) ⋅ 1 + 0 + 1 ⋅ 1 = 0 ⇒ ​ =ŷ +1 =
(1, 0) a = (−1) ⋅ 1 + 0 ⋅ 1 + 1 ⋅ 0 = −1 ⇒ ​ =ŷ −1

(1, 0) ←w~ [−1, 0, 1] + (+1)[1, 1, 0] = [0, 1, 1].

=w~ [0, 1, 1]
(0, 0) a = 0 ⋅ 1 + 1 ⋅ 0 + 1 ⋅ 0 = 0 ⇒ ​ =ŷ +1 −1

[0, 1, 1] + (−1)[1, 0, 0] = [−1, 1, 1].

=w~ [−1, 1, 1]
(0, 0) a = −1 + 0 + 0 = −1 ⇒ −1
(0, 1) a = −1 + 0 + 1 = 0 ⇒ +1
(1, 0) a = −1 + 1 + 0 = 0 ⇒ +1
(1, 1) a = −1 + 1 + 1 = 1 ⇒ +1

​ =ŷ sign(−1 + x ​ +1 x ​)2

x ​ +1 x ​ =2 1

t = +1 (2, 1),  (2, 3),  (3, 2)
t = −1 (0, −1),  (−1, −2),  (−2, −1)

=x~ [1, x ​, x ​]1 2 =w~(0) [0, 0, 0] η = 1

(2, 1), t = +1 a = 0 ⇒ ​ =ŷ +1
(2, 3), t = +1 a = 0 ⇒ ​ =ŷ +1
(3, 2), t = +1 a = 0 ⇒ ​ =ŷ +1
(0, −1), t = −1 a = 0 ⇒ ​ =ŷ +1

=w~ [0, 0, 0] + (−1)[1, 0, −1] = [−1, 0, 1]
(−1, −2), t = −1 a = (−1) ⋅ 1 + 0 ⋅ (−1) + 1 ⋅ (−2) = −3 ⇒ ​ =ŷ −1
(−2, −1), t = −1 a = (−1) ⋅ 1 + 0 ⋅ (−2) + 1 ⋅ (−1) = −2 ⇒ ​ =ŷ −1
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Pass 2 (verify all): with 

:  ✓
:  ✓
:  ✓

Negatives remain correctly classified as above.

Converged. Decision boundary:  i.e., . Everything with
 is classified ; else . (Satisfies the listed samples.) 

5) When (and why) the perceptron fails: XOR
Perceptrons can only separate linearly separable data. The classic counterexample is
XOR:

No single straight line can separate positives  from negatives
. The perceptron learning rule will keep cycling among weight vectors

without convergence (updates continue indefinitely or until you stop), which
motivates multi-layer networks with nonlinear activations. 

6) Perceptron Convergence Theorem (intuition)
If the training set is linearly separable, the perceptron algorithm converges in a
finite number of updates to a solution that correctly classifies all training points.
High-level intuition (omitting a full formal proof here, but included conceptually in
standard texts like Fausett):

Assume there exists a separating hyperplane with margin  and a separator
 with  such that  for all .

Each mistake update increases the projection of the current weight onto  by
at least , while the weight norm grows at most with the square root of the
number of mistakes.
Combining upper and lower bounds implies a finite bound on total mistakes

, where . Thus, convergence occurs after finitely

many updates. 

7) Multiclass classification with perceptrons

=w~ [−1, 0, 1]
(2, 1) a = −1 + 0 ⋅ 2 + 1 ⋅ 1 = 0 ⇒ +1
(2, 3) a = −1 + 0 ⋅ 2 + 1 ⋅ 3 = 2 ⇒ +1
(3, 2) a = −1 + 0 ⋅ 3 + 1 ⋅ 2 = 1 ⇒ +1

−1 + 0 ⋅ x ​ +1 1 ⋅ x =2 0 x ​ =2 1
x ​ ≥2 1 +1 −1

​​ ​ ​ ​

x ​1
0
0
1
1

x ​2
0
1
0
1

XOR
0
1
1
0

t
−1
+1
+1
−1

(0, 1), (1, 0)
(0, 0), (1, 1)

γ > 0
w\* ∥w ∥ =\* 1 t (w x ) ≥(i) ∗⊤ (i) γ i

w\*

γ

M ≤ ( ​)γ
R 2 R = max ​∥x ∥i

(i)
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A common approach: one-vs-rest (OvR).

Train  separate perceptrons, one for each class , using targets  for
class  and  for all others.
At inference, compute all scores  and pick .

Each perceptron uses the same update rule shown earlier, applied to its own
relabeled data. For linearly separable OvR problems, each binary task can converge. 

8) Practical details & tips
Feature scaling helps the algorithm move more steadily (big features can
dominate the dot-product).
Learning rate : any positive value works;  is common since the
perceptron uses a sign loss (no smooth gradient).
Shuffling the data each epoch can avoid cyclic visiting patterns.
Stopping: stop after an epoch with zero mistakes, or after a preset max-epochs
(if data is nonseparable). 

9) A final mini–exercise (with full calculations)
Try learning the AND function:

Epoch 1

1. :  → wrong.
Update: .

2. :  ✓
3. :  ✓
4. :  → wrong.

Update: .

Epoch 2 (check all) with 

:  (needs ) → wrong.
Update: .

:  (needs ) → wrong.
Update: .

K k t ​ =k +1
k −1

a ​ =k w ​x +k
⊤ b ​k arg max ​ a ​k k

η η = 1

​ =​ ​

(x ​, x ​)1 2
(0, 0)
(0, 1)
(1, 0)
(1, 1)

t
−1
−1
−1
+1

x~ [1, x ​, x ​],  =1 2 w~(0) [0, 0, 0],  η = 1.

(0, 0), t = −1 a = 0 ⇒ ​ =ŷ +1
[0, 0, 0] + (−1)[1, 0, 0] = [−1, 0, 0]

(0, 1), t = −1 a = (−1) ⋅ 1 + 0 + 0 = −1 ⇒ −1
(1, 0), t = −1 a = (−1) ⋅ 1 + 0 + 0 = −1 ⇒ −1
(1, 1), t = +1 a = (−1) ⋅ 1 + 0 ⋅ 1 + 0 ⋅ 1 = −1 ⇒ −1

[−1, 0, 0] + (+1)[1, 1, 1] = [0, 1, 1]

=w~ [0, 1, 1]
(0, 0) a = 0 ⇒ +1 −1

[0, 1, 1] + (−1)[1, 0, 0] = [−1, 1, 1]
(0, 1) a = −1 + 0 + 1 = 0 ⇒ +1 −1

[−1, 1, 1] + (−1)[1, 0, 1] = [−2, 1, 0]
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:  ✓
:  (needs ) → wrong.

Update: .

Epoch 3 (verify) with 

:  ✓
:  (needs ) → wrong.

Update: .
:  (needs ) → wrong.

Update: .
:  (needs ) → wrong.

Update: .

Epoch 4 (check) with 

:  ✓
:  ✓
:  (needs ) → wrong.

Update: .
:  (needs ) → wrong.

Update: .

Epoch 5 (final check) with 

:  ✓
:  (needs ) → wrong.

Update: .
:  ✓
:  ✓

Now all four are correct with , i.e.

which classifies only  as  and the others as , matching AND. (Different
training orders can converge faster; perceptron solutions are not unique.) 

(1, 0) a = −2 + 1 + 0 = −1 ⇒ −1
(1, 1) a = −2 + 1 + 0 = −1 ⇒ −1 +1

[−2, 1, 0] + (+1)[1, 1, 1] = [−1, 2, 1]

=w~ [−1, 2, 1]
(0, 0) a = −1 ⇒ −1
(0, 1) a = −1 + 0 + 1 = 0 ⇒ +1 −1

[−1, 2, 1] + (−1)[1, 0, 1] = [−2, 2, 0]
(1, 0) a = −2 + 2 + 0 = 0 ⇒ +1 −1

[−2, 2, 0] + (−1)[1, 1, 0] = [−3, 1, 0]
(1, 1) a = −3 + 1 + 0 = −2 ⇒ −1 +1

[−3, 1, 0] + (+1)[1, 1, 1] = [−2, 2, 1]

=w~ [−2, 2, 1]
(0, 0) −2 ⇒ −1
(0, 1) −2 + 0 + 1 = −1 ⇒ −1
(1, 0) −2 + 2 + 0 = 0 ⇒ +1 −1

[−2, 2, 1] + (−1)[1, 1, 0] = [−3, 1, 1]
(1, 1) −3 + 1 + 1 = −1 ⇒ −1 +1

[−3, 1, 1] + (+1)[1, 1, 1] = [−2, 2, 2]

=w~ [−2, 2, 2]
(0, 0) −2 ⇒ −1
(0, 1) −2 + 0 + 2 = 0 ⇒ +1 −1

[−2, 2, 2] + (−1)[1, 0, 1] = [−3, 2, 1]
(1, 0) −3 + 2 + 0 = −1 ⇒ −1
(1, 1) −3 + 2 + 1 = 0 ⇒ +1

=w~ [−3, 2, 1]

​ =ŷ sign(−3 + 2x ​ +1 x ​),2

(1, 1) +1 −1
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