Exercises on SVMs

@S S Roy, 8th Aug,2025

SVM decision formula is as below:

$$f(x) = w^T x + b$$

Problem 1 — classify a point

Given: W = [2, -1], b = -0.5, x = [1, 2].

Formula: $f(x) = w^T x + b$.

Solution

- 1. Compute $w^T x = 2 \cdot 1 + (-1) \cdot 2 = 2 2 = 0$.
- 2. f(x) = 0 + (-0.5) = -0.5.
- 3. Decision: sign(f(x)) = sign(-0.5) = -1.

Answer: f(x) = -0.5, classified as -1.

Problem 2 — distance from point to hyperplane

Given: W = [3, 4], b = -6, x = [2, 1].

Formula: $f(x) = w^T x + b$. Distance to hyperplane = $\frac{|f(x)|}{\|w\|}$.

Solution

- 1. $w^T x = 3 \cdot 2 + 4 \cdot 1 = 6 + 4 = 10$.
- 2. f(x) = 10 + (-6) = 4.
- 3. $||w|| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$.

4. Distance = $\frac{|4|}{5}$ = 0.8.

5. Decision: sign(4) = +1.

Answer: f(x) = 4, classified +1, distance to hyperplane = 0.8.

Problem 3 — compute margin (canonical SVM)

Given: For a canonical SVM (support vectors satisfy $y_i f(x_i) = \pm 1$) with w = [1, 1]. (No bias needed for margin formula here.)

Formula: margin = $\frac{2}{\|w\|}$. Also $f(x) = w^T x + b$ (b not used for margin numeric here).

Solution

1. $// w // = \sqrt{1^2 + 1^2} = \sqrt{2}$.

2. margin = $\frac{2}{\sqrt{2}}$ = $\sqrt{2} \approx 1.4142$.

Answer: margin = $\sqrt{2}$ (\approx 1.414).

Problem 4 — identify support vectors

Given: W = [1, -1], b = 0. Points: $p_1 = [1, 0], p_2 = [0, 1], p_3 = [2, 1]$.

Formula: $f(x) = w^T x + b$. Support vectors (in canonical scaling) are those with |f(x)| = 1.

Solution

- For $p_1 = [1, 0]$: $w^T p_1 = 1 \cdot 1 + (-1) \cdot 0 = 1$. So $f(p_1) = 1 \rightarrow |f| = 1 \Rightarrow$ support vector (class +1).
- For $p_2 = [0, 1]$: $w^T p_2 = 0 + (-1) \cdot 1 = -1$. So $f(p_2) = -1 \rightarrow |f| = 1 \Rightarrow$ support vector (class -1).
- For $p_3 = [2, 1]$: $w^T p_3 = 2 + (-1) \cdot 1 = 1$. So $f(p_3) = 1 \rightarrow |f| = 1 \Rightarrow$ support vector (class +1).

Answer: All three points have |f| = 1 and are support vectors.

Problem 5 — detect misclassification and margin check

Given: w = [-1, 2], b = 0.5. Two labeled points:

- $x^{(1)} = [1, 1]$ with label $y^{(1)} = +1$,
- $x^{(2)} = [2, 0]$ with label $y^{(2)} = +1$. Formula: $f(x) = w^T x + b$. A point is correctly classified if $y \cdot f(x) > 0$. If using canonical margin check, margin threshold is 1 (i.e., $|f(x)| \ge 1$ is outside/on margin; |f(x)| < 1 is inside margin).

Solution

- For $x^{(1)} = [1, 1]$: $w^T x^{(1)} = -1 \cdot 1 + 2 \cdot 1 = -1 + 2 = 1$. $f(x^{(1)}) = 1 + 0.5 = 1.5$. $y^{(1)} f(x^{(1)}) = (+1) \cdot 1.5 = 1.5 > 0 \rightarrow \text{correctly classified. Also } |f| = 1.5 \ge 1$ (outside margin).
- For $x^{(2)} = [2, 0]$: $w^T x^{(2)} = -1 \cdot 2 + 2 \cdot 0 = -2 + 0 = -2$. $f(x^{(2)}) = -2 + 0.5 = -1.5$. $y^{(2)} f(x^{(2)}) = (+1) \cdot (-1.5) = -1.5 < 0 \rightarrow \text{misclassified}$. Also $|f| = 1.5 \ge 1$ but sign is wrong so misclassification (on the wrong side of hyperplane).

Answer: $x^{(1)} \rightarrow f = 1.5 \rightarrow \text{correct (+1)}$. $x^{(2)} \rightarrow f = -1.5 \rightarrow \text{misclassified (should be +1 but predicted -1)}.$

@S S Roy