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1) The data and the goal

You have a labelled training set of N examples:



Rir Yih =1y, N

where:

e X; € RPisthe feature vector for example /. Think of X; as a list of p numbers (for
example, height and weight for a person would be p = 2).

o Vi € {+1,-1}isthe class label (two classes: +1 or -1).
Goal: find a straight decision boundary (a hyperplane) that separates the +1
points from the -1 points with the largest possible gap between the two

classes. This gap is called the margin.

2) What is a hyperplane? —w'x+ b =0

A hyperplane in p-dimensional space is the set of points X satisfying
w'x+b =0,

where:

o W € RPisthe normal vector (it points perpendicular to the hyperplane).

o b € Risthe bias or offset (it moves the hyperplane away from the origin).

Interpretation:

e W'Xisthe dot product (sum of elementwise products). It measures how much X
aligns with w.

o The hyperplane splits space: points with WTx + b > 0 lie on one side, and those
with WTx + b < 0 lie on the other.

3) Distance from a point to the hyperplane

The perpendicular (shortest) distance from a point Xg to the hyperplane w™x+ b =0
is

| wixg + b |

dist(xo, H) = W '

where 7/ w// = \/W12 +...+ Wg is the Euclidean length (norm) of w.

Why that formula? Intuition: divide the signed value WTxq + b by the length of W to
convert the algebraic expression into a geometric length (you can think of projecting
Xo onto the unit normal w/ /7 w/).



4) he margin and the canonical scaling (Important
correction)

We place two parallel supporting hyperplanes so that they touch the closest points of

each class:
wix+b=+1 and w'x+b=-1.

Those two lines (or hyperplanes) are parallel to the decision boundary w'x + b = 0.

The margin y is the distance between these two supporting hyperplanes.

Correct formula (fixing the typo in your text):

2

V= nwi

So the margin equals 2 divided by the length of W. (Your note had y = 2/ w //

which is backwards — the margin shrinks when # w /#/ grows.)

How we get that: distance between hyperplanes WX+ b =ciandW'x+b = is
l c1—¢c2 |

.Here ¢c1 = 1 and ¢; = —1 so distance = ————
Hw 1 2

nwi -

Also, the distance from the center hyperplane WX + b = 0 to either supporting
hyperplaneis 1/ 7w/ .

Why set the support hyperplanes at +1? Because we can scale W and b by any
positive constant without changing the decision boundary: WTx + b = 0 is the same
hyperplane as (aw)"x + (ab) = 0 for a B 0. So we pick the scaling so the closest
points satisfy

yiw'x;+b)=1 for support vectors.

This is called canonical scaling and it makes the math neat.
5) Maximizing margin — optimization problem
Because y = 2/// w //, maximizing Y is the same as minimizing #/ W // . For
convenience (and because it is mathematically smooth), we minimize % HW/ 2. The
constrained optimization (for perfectly separable data) becomes:
, 1 2
min =/w/
w,b 2

subjectto  y(w'x;+b) =1, i=1,..,0.



cXplanation or constraint yi\Ww X; T D) = 1:
o Ify; =+1thissaysw'x; +b = 1 (pointis on or beyond the +1 supporting
hyperplane).
o Ify;=-Tthissaysw'x;+b < —1.
So every point is on the correct side and at least at distance 1/ 7/ w / from the

decision boundary.

Why % /W22 The half just makes derivatives cleaner (the factor 1/2 cancels when

differentiating); the squared norm is convex and easier to optimize.

6) Support vectors — what actually defines the
classifier

Only the points that lie exactly on the supporting hyperplanes (those with y;(wTx; +
b) = 1) are called support vectors. They "support" the optimal margin — if you move

a support vector slightly the optimal hyperplane often changes. Points farther away
(with strict > 1) do not affect the optimal w, b directly.

In the solution (from the Lagrangian method) you get:

n
w= 2 a;yiXi,
i=1
where the multipliers a; = 0 and @; > 0 only for support vectors. So the final W is a

weighted sum of the support vectors.

7) Soft margin (short note) — when data is not
perfectly separable

If the classes overlap (no perfect separating hyperplane), introduce slack variables

& = 0and a penalty C > 0 that trades off margin size versus misclassification:

1 i
min =/w/?+Cx%§
wbé 2 i

st. yiw'xi+b) = 1-§, & = 0.

Large C — try hard to avoid errors (may get small margin). Small C — allow more

errors to get bigger margin.
8) Small 2D numeric example (very simple)

Takep = 2. Letw = (0, 1) and b = 0. Then hyperplaneis0-x;+1-x,+0=0=
X> = 0 (the X-axis).



e NoOrm /7 W/ =A/U-T |==+1=1.
o Supporting hyperplanes:W'x+b=1=x, =1and=-1=x, = —1.
e Marginy =2//w/ =2/1=2.5S0 the distance between X = 1 and X, = -1 is

2, and the nearest distance from the decision boundary to either margin line is
1wl =1.

If a point (0, 0.8) has label +1, check the constraint: y(w'x + b) = (+1) - (0- 0+ 1 -
0.8 + 0) = 0.8. That is less than 1, so (0, 0.8) lies inside the margin and would
either be a slack point (in soft margin) or disallowed (in hard-margin separable case).

9) Plain-English summary

e X;: adata point (list of features). y;: class (+1 or -1).

e W: direction perpendicular to the decision boundary; b shifts it.

o We scale W, b so the closest points satisfy yj(W'X; + b) = 1. Then the margin
(gap between the classes) equals 2/ 7 w // .

e To get the widest margin we minimize % // W // ? subject to those constraints.
The points that “touch” the margin are support vectors — they determine the
classifier.
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1. 1ne rropiem ovivi Iries to >olve

Imagine you have two types of points on a paper:
e Red points (Class -1)

e Blue points (Class +1)

They are linearly separable, meaning you can draw a straight line that separates all
red points from all blue points without mistakes.

But... there are infinite possible lines you could draw. Which one should we pick?

SVM chooses the line that has the largest possible margin between the two
classes.

The margin is the distance from the line to the nearest data point from either class.

2. What is "Hard-Margin" SVM?

e "Hard margin" means no mistakes allowed — every point must be correctly
classified and lie outside (or exactly on) the margin boundary.
e Works only when data is perfectly separable.

o If points overlap, hard-margin SVM won't work — we need "soft-margin" instead.

3. The Geometry

We want:

e Aseparating line (in 2D) or hyperplane (in higher dimensions).
e Two parallel lines (margins) that are as far apart as possible, touching the
nearest points of each class.

Mathematically:
Decision boundary: w'x+b =0
Margin boundaries: w'x+b=+1 and w/x+b=-1

Here:

e W =vector that defines the orientation of the line/hyperplane.
e b = bias (shifts the hyperplane up/down).
e X =input point.



4. Wiy viaxXimizZe tne viarginrg

A bigger margin means:

e The classifier is more confident.
e The model is less likely to overfit.

e Even small noise won't make the classifier flip its decision.

So we want the widest possible gap between the two margin lines.

5. The Math Formulation (Primal Problem)

The optimization problem is:

1
min =/ w/?
wbh 2

subject to:

yiw'xi+b) =1, i=1,2,..,n

What does this mean?
1. 15 // W // % = This is what we minimize.
e // W/ means the length of vector w.
e Smaller #/w/ =larger margin.
2. Constraint:

yiw"x; + b) = 1

e Jj=classlabel (+1 or-1).

o Ify; = +1, the condition becomes W' x; + b = 1 — point is on or beyond
the positive margin line.

o Ify; =1, the condition becomes W' x; + b < —1 — point is on or beyond
the negative margin line.
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Lagrange mulitipliers in SVivi

1) What problem are we solving?

Sometimes we must optimize (maximize or minimize) something subject to a rule (a
constraint).
Example: “Find the highest point on a hill, but you must stay on a circular path.”

The hill height is the thing to optimize; the circle is the constraint.

You can't just climb straight up the hill (take the ordinary derivative) because you
must stay on the circle. Lagrange multipliers are a clever tool that let us find optima

while respecting the constraint.

2) Intuition for a Lagrange multiplier

Think of a contour map of the hill (lines of equal height). If you're restricted to the
circle, the highest point on that circle happens where a contour line just touches the
circle — they are tangent. At that touching point the direction that increases the hill
the fastest (the gradient of the hill) is perpendicular to the circle, and the direction
perpendicular to the circle is the gradient of the constraint. So these two gradients

point the same way (are parallel).

The Lagrange multiplier A is just a number that says “how much the constraint’s

gradient must be scaled so it matches the hill's gradient.” Algebraically we write:

Vixy) =\ Vg(xy)

where f is the thing we optimize and g is the constraint (e.g., g(x,y)=0 describes the

circle). Solving this plus the constraint gives the answer.



>5) SNnort aigepraic recipe (N0 neavy calculus requireaq)

To find extrema of f(x,y) subject to g(x,y)=0:

1. Build the Lagrangian: L(x,y,A) = f(x,y) — A(g(x,y))
2. Solve the system of equations: dL/dx =0, dL/dy =0, and g(x,y)=0.
This gives candidate points; pick the one that fits.

4) Now: SVM (Support Vector Machine) — what is
optimized?
SVM wants a straight line (in 2D) or hyperplane (higher D) that separates two classes

and keeps the classes as far away from the line as possible. That “far away” is called

the margin. For a hard-margin linear SVM the optimization is:

Minimize:

1
— // w2 (this is the same as maximizing the margin)

2

Subject to (for every training point /):
yilw - x; + b) = 1

Here:

e W is the normal vector to the separating hyperplane,
e b shifts the plane,
e Viis+1 or-1(class label),
e X;isthe point.
These are many constraints (one per training point). You cannot just set derivative =

0 because of those constraints — you must account for them.
5) Why use Lagrange multipliers in SVM?

We turn the constrained minimization into an easier problem using Lagrange

multipliers @; (one non-negative multiplier for each constraint). Form the Lagrangian:

L(W,b,a)=1§//w//2—Za,-(yi(w-x,-+b)—1), G/ZO.
i

Steps we do next (conceptual):

1. Take partial derivatives of L w.rt W and b and set them to zero (this enforces
optimality while accounting for constraints).
o From dL/dw=0weget: W = 2, Q;yiX;.



e From oL/db=Uweqget Uy = V.

2. Substitute W back into L to get the dual problem. The dual becomes a

maximization problem in the variables @; only.

6) Why this helps — the big benefits

1.

Only some points matter (support vectors): By a condition called
complementary slackness, for each training point either the constraint is not
tight (point far away) and @; = 0, or the constraint is tight (point lies on the
margin) and @; > 0. So only the points with @; > O — the support vectors —
determine the final hyperplane. That's very efficient and intuitive: only the
closest points to the boundary count.

Kernel trick becomes possible: The dual problem depends on dot products X; °
X;j. By replacing dot products with kernel functions, SVM can learn non-linear
boundaries without working in high-dimensional space explicitly. This huge

flexibility comes from using the Lagrange dual form.

3. Solving is easier / standard: The dual is a convex quadratic programming
problem in @; with simple constraints (@; = 0, ¥ a;y; = 0). Convex problems
have a single global optimum — good for reliability.

7) A friendly analogy

Think of each constraint (each training point) as a person who “complains” if the

separating line treats them unfairly. The Lagrange multiplier @; is how loudly that

person complains. Most people are quiet (a=0) because they are safely far away from

the boundary. The loud ones (a>0) are the ones right on the margin — they force the

final decision boundary to be where it is. The SVM solution balances these

complaints while also trying to make the boundary as “simple” as possible (small

[wl).

8) Key takeaways (quick)

Lagrange multipliers let you solve optimization problems with constraints by
turning them into equations you can solve.

In SVMs they let us include the constraints yj(w - X; + b) = 1 directly and
produce a dual that depends only on dot products.

The multipliers @; tell us which training points are important (support vectors)
and enable kernels for non-linear SVMs.

The math stays clean and gives a unique, global best solution because the

problem is convex.
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SUupport vector iacnine Froofs

1. Intuition and goal

Given a labelled training set (x;, y;) for i = 1, ..., n, where X; € RP and labels y; €
{+1, =1}, the linear SVM seeks a hyperplane that separates the two classes with the

maximum margin. A hyperplane is
H: w'x+b=0,
where W € RP (normal vector) and b € R (bias).

We scale W, b so that the closest points satisfy y;(W'x; + b) = 1. With that canonical
scaling, the margin y (distance between the two parallel supporting hyperplanes) is

2
V=W

and the distance from the hyperplane W'x + b = 0 to the closest pointis 1/ /7w 7/ .
So maximizing the margin is equivalent to minimizing 7/ w / (or 15 // w // %) under

certain constraints.



2. Hard-margin SVM (linearly separable data)
Primal optimization problem (convex quadratic program):
, 1 2
min /w7
w,b 2
st. yiw'x;+b) =1, i=1,..,n.

This enforces that all training points lie on or outside the two margin planes W'x +
b=+1.

2.1 Lagrangian (primal — dual)

Introduce Lagrange multipliers a; = 0 for the inequality constraints. The (primal)
Lagrangian is

n
L(w, b, a) = % Nwi?-3 a;lyi(w'x; + b) = 1].
i=1

Stationarity conditions (set partial derivatives to zero):

al_ n n
1. m=02>w—2a,-y,-x,-=0 = W= X qyiX.
51 = . i=1
2.%=0:>—Za,y/=0 = Za,y;=0

i=1 i=1
Plugging W back into L yields the dual objective (maximize w.r.t. & subject to a; = 0
and 2 a;y; = Oy



max W(a) = X q; —% X 3 aiayyixi X
=1 i=1 j=1
n

st. =20, XZay=0
=1

This is a concave quadratic maximization (equivalently convex QP in standard form).

2.2 Support vectors and classification rule
From solution a*:

e Only those training points with a; > O appear in W. These are the support
vectors.
e For any support vector Xk that lies exactly on the margin (yx(W'xx + b) = 1), we
can compute b as
b =y - w'xg.
In practice use the average over support vectors.
Decision function for a new X:

f(x)=sign(w'x+b) =sign( = a;yx'x+b),
ieS

where S is the set of indices with a; > 0.

2.3 Relationship of 7/ w/ and margin

With canonical scaling we enforced y,'(WTX/ + b) = 1. The perpendicular distance

yiw'xi+b) _ 1

from hyperplane to the nearest point is min; == = ———. Thus margin

between the two support hyperplanes is ﬁ So minimizing / w // 2/2 maximizes

the margin.

3. Karush-Kuhn-Tucker (KKT) conditions (hard-margin)

KKT conditions give necessary and sufficient optimality conditions (convex QP implies
sufficiency). They are:

Primal feasibility: yi(w'x; + b) = 1.

Dual feasibility: a; = 0.

Stationarity: W = 2 a;yiX;, 2,;q;y; = 0.

Complementary slackness: q;[y;(w'x; + b) — 1] = O for each /.

P wWwbh =

From complementary slackness:



e ITd; - Y, then yj\W X; T0)~ | = Uithe point lies on the margin (support
vector).
o Ifyiw'x;+b)> 1, then a; = 0: non-support interior point.

4. Soft-margin SVM (non-separable or noisy data)

Allow slack variables & = 0 to tolerate violations. Primal problem:

1 !
min -/w/?+CX§
wbhe 2 .

Ss.t. _y,'(WTX,' +b) =1 —f,', f,‘ =0, i=1,..,n

C > 0 trades off margin size and penalty for margin violation. Larger C — fewer

violations but smaller margin (more strongly penalized errors).

4.1 Soft-margin dual

Form Lagrangian with multipliers @; = O for main constraints and y; = 0 for & =
0:

Lw, b, & a,u)=3/wi?+CE &= 3 alyw'x;+b)=1+&1- X pié.

1 1 1

Stationarity:

e OL/OW=0=w= X, aqyyx.

e OL/Ob=0= %Z;ay;=0.

° 8L/86i=O:C—ai—/,/f=O:>0<ai<C.

Dual becomes:

n

1

m = = Y aaViVixTX;

ax 21 a; -5 Z a;ia;yyiX; X;
= I,J

n
S.t. O<CI,’<C, Za,-y,-=0

=1

So only difference is box constraint 0 < a; < C. Points with 0 < @; < C lie exactly
on the margin, points with a; = C are margin-violating/error points, and @; = O are

interior non-support points.

KKT complementarity for slack:

ailyiw'x;+b)—1+§]1=0, pi¢i =0



2. Kernel triCck — noniinear separation

Replace inner products X[ X; with kernel function K(x;, X;) = @¢(x;)T @(x;) where ¢

maps inputs to a (possibly high-dimensional) feature space. Dual problem becomes:

1
méa\x 2 ai— 5 > aja;yiyiK(xi, X;)
i i)
Ss.t. 0<a,-<C, Za,-y,-=0

I

SS ROY

Decision function:

n
fx) = sign( Z ajyiK(x;, x) + b).
i=1
Common kernels: linear K(x, Z) = X"z, polynomial (x"z + ¢)?, RBF/Gaussian
K(x,z) = exp(=/ x =z // ?/(26?)).

6. Full derivation of the dual (step-by-step)

Starting primal hard-margin:

min

I Thawh? styw'x+b) = 1.
w,

Form Lagrangian:

Lw, b, a) = Iw"w - X afy(w"x; + b) - 11.
i

Stationary conditions:
e Vub=w-X%X;aqyxi=0=>w=X,;aqyiX.
e OL/Ob=-%;ayi=0

Plugging W back:

Lw, b, @) = H(Z ayix)T(Z ayx) - = aiyil( £ apy;x) i+ b) = 1)
i j i j
= > X aayyix| X - X ayi X ayxxi—b X ayi+ X q
i i j i i
= —% 2 aiajy;)/jx,ij + 2 qj,
i i

using ¥ ; a;y; = 0 and symmetry X]X; = X/ x;. So dual objective:



Wwi\a)= 2 U= 5 2 UiljyiyjX; Xj,
i ij

subjectto @; = 0 and X, a;y; = 0. That proves the dual formulation.

7. Connection to hinge loss and primal unconstrained form

The soft-margin primal can be written as unconstrained minimization:

n
mibn % Awh?+C 3T max(0, 1-yw'x + b)),
W i=1

where max(0, 1 — 2) is the hinge loss.

8. Practical observations

e Support vectors completely determine W and classification complexity often
depends on number of support vectors.

e Solve the dual QP via specialized solvers (e.g., SMO) — especially efficient when
n is modest and p is large after kernels.

e Scaling features (zero mean, unit variance) is important for performance.

e For large datasets, primal methods or linear SVM solvers (e.g., LIBLINEAR) are

used.

9. Short proofs / reminders (compact)

Margin formula

If the hyperplane is WTx + b = 0. Distance from point X to hyperplaneis | w'x +

b | /7w .Under canonical scaling the closest points satisfy | w'x;+b | =1.So
distance to margin plane = 1/ / w //, margin between classes = 2/ / w // .

Stationarity — representation
From VL =0, w = X a;yiX;. This proves that the optimal W is a linear

combination of training points (support vectors).

Dual convexity
Dual is concave in a (negative definite quadratic term), constraints are linear —

global maximum is found by convex QP solvers.

10. Example (small numeric)

Given two 2-D points X1 = (1, 1),)1 = +1 and x2 = (2, 2), > = =1 they are not

separable by margin >0 obviously, but you can use soft-margin with C chosen



appropriately.



