Adaboost

@S S Roy,19th Sept

1. Goal. Combine several weak learners My, ..., My into a strong classifier by
reweighting training examples each round so that later learners focus on
previously misclassified examples. Final prediction is a weighted vote of weak
learners.

2. Initialization. Give each of the d training tuples equal weight W}O) =1/d.

3. Foreachroundi=1..k:

e Sample a training set D;j according to the current weights.
e Train weak learner Mj on D;.

e Compute weighted error:

crroruvily)y =« Wj
J:Mi(x;)By;
o Iferror(M;) > 0.5, reject M; and try another weak learner.
e Compute classifier vote weight:

1 —error(M;)
error(M;)
e Update sample weights: for each sample

a; =

[w; if misclassified by M;
wj < 1 . _error(M))

: v classifi
WX T error(M) if correctly classified

then normalize all W; so Zj w; = 1.
4. Final classification of a new X:
e Foreachclass ¢, sum 2 ;a; - 1[Mi(x) = c].
e Return class with largest total weight. (Equivalently: compute S(x) =
> ; a; Mj(x) if labels are 1, then sign($).)

Part B — Worked example

Sample X1 X2 True class Y
1 1 2 +1
2 2 1 +1
3 2 3 +1
4 3 2 +1
5 3 3 +1
6 4 1 -1
7 4 2 =1

So classes are imbalanced: 5 positives (+1) and 2 negatives (-1).

vwe will run AdabOO0oSt T0r K = 2 rounds (two weak learners). vwweak learners are
decision stumps (one feature threshold).

Round 1

Step 1 — Initialize weights

There are d = 7 examples, so initial weight for each:

w}o’ = % ~ 0.1428571429.

(We'll display decimals to 6 places when helpful: 0.142857.)
Step 2 — Choose a weak learner

Pick a decision stump:

e Rule Mq:if X7 < 3 predict +1, else predict —1.

Apply M, to all samples:

Sample X1 True Y M1 prediction Correct?
1 1 +1 +1 yes
2 2 +1 +1 yes
3 2 +1 +1 yes
4 3 +1 —(3isnot <3) — -1 no
5 3 +1 -1 no
6 4 -1 -1 yes
7 4 -1 -1 yes

Misclassified: samples 4 and 5 (both are positives that stump got wrong).

Step 3 — Weighted error of M,

© , . _ 1

error(Mq) =w," +wg ' = 7 +

=~ 0.285714.

N -
NN

trnisis ~ U.Zoo/ 14, 1ess than U.5, SO Vi1 IS accepteaq.)

Step 4 — Classifier vote weight

1 -error 1-2/7
a; =log ———— = log = log

—10g 7 < 10g 3
error 2/7 2/7

log 5 =log(2.5).

Numeric value (natural log):
a; = In(2.5) = 0.916291.
Step 5 — Update sample weights (before normalization)

Compute ratio used for correctly classified samples:

po_orror _ 217
1-error 5/7

2
=z =04

e For misclassified samples (4,5): keep weight = 0.142857.
e For correctly classified samples (1,2,3,6,7): multiply weight by r = 0.4: new
weight =0.142857 x 0.4 = 0.0571428.

So unnormalized weights after update:

Sample unnorm. weight
1 0.0571429
2 0.0571429
3 0.0571429
4 0.1428571
5 0.1428571
6 0.0571429
7 0.0571429

Sum of unnormalized weights:

§$=5x0.0571429 + 2 x0.1428571 = 0.2857145 + 0.2857142 = 0.5714287

(Exact rational value: S = 2.04+2=2+2=2_pytwekeep decimals;
7 777777 p

normalized result follows.)

S>tep o — Normalize (diviae each by o)

Compute normalized weights wi" =

f (unnorm weight)/S.

Because numbers are symmetric, we can compute:

e For misclassified samples (4 & 5):

(1) =) = 0.1428571

Wy =~ 0.25.

5 ~0.5714287

e For correctly classified samples (1,2,3,6,7):

() _ 0.0571429 _
W' = ——————

i = 05714287 010

Check sum:

5x0.10+2x0.25=0.50 +0.50 = 1.00.

So after Round 1 final weights:

(1)

Sample w;

1 0.10
2 0.10
3 0.10
4 0.25
5 0.25
6 0.10
7 0.10

Observation: the two samples misclassified (4 & 5) now have larger weight (0.25
each); the remaining five samples have reduced weight (0.10 each). The algorithm

has focused attention on the previously hard (positive) examples.

Round 2

Step 1 — Train a new weak learner using the new weights

vwe try a aecision stump that splits on Ap. Lonsider tne rule:

o My:ifXo = 2.5 predict +1, else predict —1.

Apply M5 to all samples:

Sample X5 True Y M, pred Correct?
1 2 +1 (2>=2.57) = -1 no
2 1 +1 -1 no
3 3 +1 +1 yes
4 2 +1 -1 no
5 3 +1 +1 yes
6 1 -1 -1 yes
7 2 -1 -1 yes

So with this stump, misclassified samples are 1, 2, 4 (all positives with X; < 2.5).
Samples 3 & 5 (positives with Xo = 2.5) are correctly classified; negatives 6 & 7 also

correct.
Step 2 — Compute weighted error
Use weights W from after Round 1:
error(My) = w"” +wi + wi’ = 0.10 + 0.10 + 0.25 = 0.45.
This error is 0.45 < 0.5, so M, is acceptable.

Step 3 — Compute classifier vote weight Q>

1-0.45 0.55 _ 11
=log —+ 9(?)-

az =log 575~ 045

Numeric:

2 = In(1.222222...) = 0.2006707.

(We'll keep 6 dp: a; = 0.200671.)

Step 4 — Update sample weights (before normalization)

compute ratio 1or correctly classitiea samples:

error(M2) _ 0.45

2= T error(My) 055 08181818

Update rule: if correctly classified = multiply weight by r». If misclassified — keep

weight.
List samples and their unnormalized updated weights:

e Misclassified (keep same):
e sampletl:unnorm = 0.10
e sample2: unnorm = 0.10
e sample4: unnorm = 0.25

e Correctly classified (multiply by r, = 0.8181818):
e sample3:0.10x0.8181818 = 0.0818182
e sample5: 0.25% 0.8181818 = 0.2045455
e sample6:0.10x0.8181818 = 0.0818182
e sample7:0.10x 0.8181818 = 0.0818182

Now compute sum of unnormalized weights S>:

S2=(0.10+0.10 + 0.25) + (0.0818182 + 0.2045455 + 0.0818182 + 0.0818182).

Compute each group:

e Misclassified sum = 0.45.
e Correctly-classified sum =~ 0.0818182 + 0.2045455 + 0.0818182 +
0.0818182 = 0.4499999 (rounding gives 0.45).

Sototal S2 = 0.45 +0.45 = 0.90.

Step 5 — Normalize to get final weights W}z)

Divide each unnormalized weight by S, = 0.90:

e For misclassified:
« w'?=0.10/0.90 = 0.1111111
« w¥ =0.10/0.90 = 0.1111111
. w =0.25/0.90 ~ 0.2777778
e For correctly classified:
wy) ~ 0.0818182/0.90 ~ 0.0909091
w) &~ 0.2045455/0.90 ~ 0.2272728

e Wg ~ UUSIGIOGZ/VU.JU ~ U.UJUIUI I
w'? =~ 0.0818182/0.90 =~ 0.0909091

Check sum:

2x0. 1111111 +1x0.2777778 + 3 x0.0909091 + 1 x 0.2272728
=0.2222222 +0.2777778 + 0.2727273 + 0.2272728 = 1.0000001 (rounding er

So final weights after Round 2 (rounded to 6 dp):

Sample Wj('Z) (approx)
1 0.111111
2 0.111111
3 0.090909
4 0.277778
5 0.227273
6 0.090909
7 0.090909

Observation: sample 4 (a positive that was misclassified in both rounds) now has the
highest weight (~0.2778). Sample 5 is next (~0.2273). The negatives (6 & 7) are
relatively low weight (~0.0909 each).

Final Ensemble Model (after 2 rounds)

We have two accepted classifiers with weights:

e Mi:rule X1 <3 = +1else—1,weighta; = 0.916291.
o My:ruleX; = 2.5 = +1 else =1, weight a, = 0.200671.

For a new input X, compute the weighted sum:
5(x) = a1 - Mq(x) + az - Ma(x).

Return sign(S(x)) (ties break arbitrarily, e.g., +1).

EXample: classity tralning sampie 4 (as a cneck)
Sample 4: (X1,X2) = (3, 2), true Y = +1.

e Mq(4): since X1 = 3 not <3 — predict —1.
o My(4):since Xo =2 < 2.5 — predict —1.

Weighted sum:

5(4) =0.916291 x (=1) + 0.200671 x (=1) = =(0.916291 + 0.200671) = =1.116962.

Sign is negative = the ensemble predicts —1, so the ensemble misclassifies sample
4 (true label +1). That reflects that sample 4 remained hard for both stumps in our

chosen stump set.

Points to remember-->

* We used an imbalanced training set (5 positives vs 2 negatives). AdaBoost
correctly shifted attention (weights) to the positive examples that were difficult
(samples 4 and 5).

e After Round 1, misclassified positives (4 & 5) had higher weight (0.25 each) while
the rest had 0.10.

e In Round 2 we chose M, to reduce error on some of these; final weights show
sample 4 is now the hardest example (~0.278).

e Final ensemble weights @ and a> reflect relative strengths: @; = 0.9163,
a, = 0.2007. So M4 has more influence.

e Even after boosting, some hard examples may remain misclassified if weak
learners cannot capture their pattern; AdaBoost will continue to focus on them

in subsequent rounds.

@S S Roy

