K MODES CLUSTERING

~S S Roy,5th Sept,2025

What it is (and why it exists)

K-Modes is the categorical-data sibling of k-means.

Where k-means uses **means** and **squared Euclidean distance** (which break on strings/categories), k-modes uses:

- Modes (most frequent category per feature) instead of means
- **Simple matching dissimilarity** (count of mismatched categories) instead of squared distance

This makes it ideal for data sets like survey responses, SKUs with attributes, demographics, medical codes, etc.

Core definitions

1) Dissimilarity (distance)

For two categorical vectors $x=(x_1,\ldots,x_p)$ and $y=(y_1,\ldots,y_p)$, the usual distance is

$$d(x,y) = \sum_{j=1}^{p} 1\{x_j \not \models y_j\}$$

(You can optionally **weight** features: $d_w(x, y) = \sum_j w_j 1\{x_j \not [y_j]\}$.)

2) Cluster representative (mode)

Given a cluster C and feature j, the **mode** m_j is the category with highest frequency in that feature within C.

The cluster center is $m = (m_1, ..., m_p)$.

3) Objective function (what k-modes minimizes)

$$Cost(C_1, ..., C_k) = \sum_{i=1}^{n} d(x_i, \text{mode of its cluster})$$

i.e., the total number of within-cluster mismatches.

The algorithm (Huang, 1998) — step-by-step

- **1. Initialize** *k* modes (seeds):
 - **Random**: pick *k* rows at random.
 - **Huang**: for each feature, sample categories proportionally to frequency to build diverse, realistic seeds.
 - Cao: density-based seeding; spreads modes towards dense regions.
- 2. Assign each record to the nearest mode by simple matching dissimilarity.
- **3. Update** modes: in each cluster, set each feature to its most frequent category (break ties consistently, e.g., highest frequency across other features or lexicographic).
- **4. Repeat** assign ↔ update until modes don't change (or cost stops improving).
- **Per-iteration cost**: O(nkp) with n rows, k clusters, p features.

A worked example (complete table + full first iteration)

We'll cluster k = 2 on a tiny retail-attributes dataset with four categorical columns:

- Size \in {S, M, L}
- Fit ∈ {Slim, Regular}
- Color ∈ {Red, Blue, Green}
- **Fabric** ∈ {Cotton, Polyester}

Example data table

ID	Size	Fit	Color	Fabric
1	S	Slim	Red	Cotton
2	S	Slim	Blue	Cotton
3	М	Regular	Blue	Cotton

ID	Size	Fit	Color	Fabric
4	L	Regular	Blue	Polyester
5	L	Regular	Green	Polyester
6	М	Slim	Red	Cotton
7	М	Regular	Blue	Polyester
8	L	Regular	Blue	Cotton

Initialization (random pick):

 $Mode_1 \leftarrow row 1 = (S, Slim, Red, Cotton)$

 $Mode_2 \leftarrow row 4 = (L, Regular, Blue, Polyester)$

First assignment step (simple-matching distance)

For each row, count feature mismatches vs each mode (0 = perfect match, 4 = all different):

ID	to Mode₁ (S,Slim,Red,Cotton)	to Mode₂ (L,Regular,Blue,Pol y)	Assign
1	0	4	C ₁
2	1 (Color)	3 (Size, Fit, Fabric)	C ₁
3	3 (Size, Fit, Color)	2 (Size, Fabric)	C ₂
4	4	0	C ₂
5	4	1 (Color)	C ₂
6	1 (Size)	4	C ₁
7	4	1 (Size)	C ₂
8	3 (Size, Fit, Color)	1 (Fabric)	C_2

Clusters after assignment:

•
$$C_1 = \{1, 2, 6\}$$

•
$$C_2 = \{3, 4, 5, 7, 8\}$$

Update modes

- For C₁ (rows 1,2,6):
 - Size: S(2), M(1) → S
 - Fit: Slim(3) → **Slim**
 - Color: Red(2), Blue(1) → **Red**
 - Fabric: Cotton(3) \rightarrow Cotton

Mode₁′ = (S, Slim, Red, Cotton) (unchanged)

- For C₂ (rows 3,4,5,7,8):
 - Size: L(3), M(2) → L
 - Fit: Regular(5) → Regular
 - Color: Blue(4), Green(1) → Blue
 - Fabric: Polyester(3), Cotton(2) → **Polyester**

Mode₂′ = (L, Regular, Blue, Polyester) (unchanged)

Since modes didn't change, the algorithm **converges** after one full iteration here.

Final cost (sum of distances to final modes)

- C_1 distances: 0 (ID1) + 1 (ID2) + 1 (ID6) = 2
- C₂ distances: 2 (ID3) + 0 (ID4) + 1 (ID5) + 1 (ID7) + 1 (ID8) = 5
 Total cost = 7.

How to choose k

There's no single "right" k, but common practices:

- **1. Elbow on cost**: run k-modes for k = 1, 2, ... and plot total cost; pick the elbow.
- **2. Holdout validation**: train on a subset, compute assignment cost on a held-out set; pick k that minimizes held-out cost.
- **3. Stability**: run multiple seeds; pick k with high stability (e.g., high Adjusted Rand Index across runs).
- **4. Silhouette-like scores for categorical data** (using Hamming/simple-matching)
 - useful but more nuanced than numeric silhouette.

Practical details & best practices

• **Initialization matters**: use Huang or Cao seeds and **multiple restarts** to avoid poor local minima.

- **Ties when updating modes**: break deterministically (e.g., pick the category that yields lower total cost, or a fixed order).
- **Feature scaling & weights**: high-cardinality or business-critical fields can be upor down-weighted.
- **Missing values**: treat missing as a special category (e.g., "NA") or impute; be consistent at train & inference time.
- **Unseen categories at inference**: map to "other"/"rare" or nearest known category by domain rules.
- **Encoding**: **Do not** one-hot encode before k-modes; pass raw categorical labels (strings or ints).
- **Mixed data**: For numeric + categorical, use **k-prototypes** (extends k-modes + k-means).
- **Complexity**: Each iteration is O(nkp); k-modes is typically fast for tidy categorical tables.

Minimal, readable Python

A. From-scratch, didactic k-modes (for learning)

```
python
from collections import Counter
import random
def hamming(x, y):
  return sum(a != b for a, b in zip(x, y))
def mode_of_cluster(rows):
  # rows: list of tuples/arrays of categorical values with same length
  p = len(rows[0])
  mode = []
  for j in range(p):
    counts = Counter(r[j] for r in rows)
    # break ties by (freq desc, value asc) for determinism
    mode.append(sorted(counts.items(), key=lambda t: (-t[1], str(t[0])))[0][0])
  return tuple(mode)
def kmodes(X, k, max_iter=100, n_init=5, seed=None):
  rng = random.Random(seed)
```

```
best = None
for _ in range(n_init):
  # Huang-like start: pick k distinct rows as initial modes
  modes = [tuple(row) for row in rng.sample(X, k)]
  for _ in range(max_iter):
    # assign
    assigns = [[] for _ in range(k)]
    for row in X:
      dists = [hamming(row, m) for m in modes]
      j = min(range(k), key=lambda idx: (dists[idx], idx)) # tie-break by index
      assigns[j].append(row)
    # update
    new_modes = []
    for j in range(k):
      new_modes.append(mode_of_cluster(assigns[j]) if assigns[j] else modes[j])
    if new_modes == modes:
      break
    modes = new_modes
  # compute cost
  cost = sum(min(hamming(row, m) for m in modes) for row in X)
  if best is None or cost < best[0]:
    best = (cost, modes, assigns)
cost, modes, assigns = best
labels = ∏
for row in X:
  dists = [hamming(row, m) for m in modes]
  labels.append(min(range(k), key=lambda idx: (dists[idx], idx)))
return {"modes": modes, "labels": labels, "cost": cost}
```

Try it on the example:

```
x = [
("S","Slim","Red","Cotton"),
("S","Slim","Blue","Cotton"),
("M","Regular","Blue","Cotton"),
("L","Regular","Blue","Polyester"),
("L","Regular","Green","Polyester"),
("M","Slim","Red","Cotton"),
("M","Regular","Blue","Polyester"),
("L","Regular","Blue","Cotton"),
```

```
res = kmodes(X, k=2, n_init=10, seed=42)

print("Modes:", res["modes"])

print("Cost:", res["cost"])

print("Labels:", res["labels"])
```

B. Production-ready library (quick & robust)

Install once: pip install kmodes

```
python
from kmodes.kmodes import KModes
km = KModes(n_clusters=2, init='Cao', n_init=10, max_iter=100, random_state=42)
labels = km.fit_predict([
["S","Slim","Red","Cotton"],
["S","Slim","Blue","Cotton"],
["M","Regular","Blue","Cotton"],
["L","Regular","Blue","Polyester"],
["L","Regular","Green","Polyester"],
["M","Slim","Red","Cotton"],
["M","Regular","Blue","Polyester"],
["L","Regular","Blue","Cotton"],
1)
print("Cluster modes:", km.cluster_centroids_) # modes per feature
print("Labels:", labels)
print("Cost:", km.cost_)
```

- init='Huang' or init='Cao' are strong defaults.
- Use n_init>1 to reduce sensitivity to starting seeds.
- New points can be assigned via kmodes.predict(new_samples).

Interpreting results

- Modes tell the story: each mode is a "typical profile" for the cluster (e.g., (L, Regular, Blue, Polyester) = stock keeping segment).
- Within-cluster mismatch is the natural fit score: lower is better.
- Per-feature mismatch rates help diagnose which attributes drive separation.

Common pitfalls (and quick fixes)

- Many rare categories → collapse to "Other" or group by domain ontology.
- Dominant features → apply feature weights (e.g., weight by inverse cardinality or business importance).
- **Unbalanced clusters** \rightarrow consider different k, better initialization (Cao), or feature weights.
- Mixed numeric/categorical → use k-prototypes instead of forcing everything to categories.
- Inconsistent preprocessing → ensure the same cleaning, category mapping, and missing-value strategy for train & inference.

T	• 4
Imn	points
	POLITICS

rates.

•	Categorical data only? (If mixed, use k-prototypes.)
•	Clean categories, handle missing, map rare to "Other".
•	\square Pick k via elbow/validation/stability.
•	Use Huang/Cao init and multiple restarts.
•	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

Further reading (for depth)

- Z. Huang (1998). "Extensions to the k-means algorithm for clustering large data sets with categorical values." *Data Mining and Knowledge Discovery*.
- Z. Huang (1997). "Clustering large data sets with mixed numeric and categorical values." *Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery and Data Mining* (k-prototypes).

K-Modes Worked Example with Multiple Iterations

We'll use the same **toy dataset**:

ID	Size	Fit	Color	Fabric
1	S	Slim	Red	Cotton
2	S	Slim	Blue	Cotton
3	М	Regular	Blue	Cotton
4	L	Regular	Blue	Polyester
5	L	Regular	Green	Polyester
6	М	Slim	Red	Cotton
7	М	Regular	Blue	Polyester
8	L	Regular	Blue	Cotton

We'll set **k = 2 clusters**.

Step 1. Initialization (choose 2 random seeds)

Let's pick:

- Mode₁ (initial) ← Row 2 = (S, Slim, Blue, Cotton)
- Mode₂ (initial) ← Row 5 = (L, Regular, Green, Polyester)

These are less "clean," so convergence takes longer.

Step 2. First Assignment

Compute mismatches for each row vs each mode:

ID	Row (Size, Fit, Color, Fabric)	d to Mode₁ (S,Slim,Blue,Cotto n)	d to Mode₂ (L,Regular,Green,P oly)	Assign
1	(S,Slim,Red,Cotton)	1 (Color)	4	C ₁
2	(S,Slim,Blue,Cotton)	0	4	C ₁
3	(M,Reg,Blue,Cotton)	2 (Size,Fit)	2 (Size,Fabric)	C_1 (tie $\rightarrow C_1$)
4	(L,Reg,Blue,Poly)	2 (Size,Fabric)	1 (Color)	C ₂
5	(L,Reg,Green,Poly)	3	0	C ₂
6	(M,Slim,Red,Cotton	2 (Size,Color)	4	C ₁
7	(M,Reg,Blue,Poly)	2 (Size,Fabric)	1 (Color)	C ₂
8	(L,Reg,Blue,Cotton)	2 (Size,Fabric)	1 (Color)	C_2

Clusters after Iteration 1:

- $C_1 = \{1,2,3,6\}$
- $C_2 = \{4,5,7,8\}$

Step 3. Update Modes

- Mode₁ (C₁ rows 1,2,3,6):
 - Size: S(2), M(2) \rightarrow tie \rightarrow pick **S** (tie-break fixed order)
 - Fit: Slim(3), Reg(1) → **Slim**
 - Color: Red(2), Blue(2) \rightarrow tie \rightarrow pick **Blue**
 - Fabric: Cotton(4) \rightarrow Cotton
 - \rightarrow Mode₁' = (S, Slim, Blue, Cotton)
- Mode₂ (C₂ rows 4,5,7,8):
 - Size: L(3), M(1) → L
 - Fit: Reg(4) \rightarrow Regular

- Color: Blue(3), Green(1) → Blue
- Fabric: Polyester(2), Cotton(2) → tie → pick **Polyester**
 - \rightarrow Mode₂' = (L, Regular, Blue, Polyester)

Step 4. Second Assignment

Now compare all rows again vs updated modes:

ID	Row	d to Mode ₁ ' (S,Slim,Blue,Cotto n)	d to Mode₂′ (L,Reg,Blue,Poly)	Assign
1	(S,Slim,Red,Cotton)	1 (Color)	3 (Size,Fit,Fabric)	C ₁
2	(S,Slim,Blue,Cotton)	0	3 (Size,Fit,Fabric)	C ₁
3	(M,Reg,Blue,Cotton)	2 (Size,Fit)	1 (Fabric)	C ₂
4	(L,Reg,Blue,Poly)	3 (Size,Fit,Fabric)	0	C_2
5	(L,Reg,Green,Poly)	4	1 (Color)	C_2
6	(M,Slim,Red,Cotton)	2 (Size,Color)	3 (Size,Fabric,Color)	C ₁
7	(M,Reg,Blue,Poly)	3 (Size,Fit,Fabric)	1 (Size)	C ₂
8	(L,Reg,Blue,Cotton)	2 (Size,Fit)	1 (Fabric)	C ₂

Clusters after Iteration 2:

- $C_1 = \{1,2,6\}$
- $C_2 = \{3,4,5,7,8\}$

Step 5. Update Modes Again

• Mode₁ (rows 1,2,6):

• Size: S(2), M(1) → S

• Fit: Slim(3) → **Slim**

• Color: Red(2), Blue(1) → Red

• Fabric: Cotton(3) → Cotton

 \rightarrow Mode₁" = (S, Slim, Red, Cotton)

Mode₂ (rows 3,4,5,7,8):

• Size: L(3), M(2) → L

• Fit: Reg(5) \rightarrow Regular

• Color: Blue(4), Green(1) → Blue

• Fabric: Polyester(3), Cotton(2) → Polyester

→ Mode₂" = (L, Regular, Blue, Polyester)

Step 6. Third Assignment

Check again with new Mode₁" and Mode₂":

ID	Row	d to Mode ₁ " (S,Slim,Red,Cotton)	d to Mode ₂ ″ (L,Reg,Blue,Poly)	Assign
1	(S,Slim,Red,Cotton)	0	4	C ₁
2	(S,Slim,Blue,Cotton	1 (Color)	3 (Size,Fit,Fabric)	C ₁
3	(M,Reg,Blue,Cotton)	3 (Size,Fit,Color)	1 (Fabric)	C ₂
4	(L,Reg,Blue,Poly)	4	0	C ₂
5	(L,Reg,Green,Poly)	3	1 (Color)	C ₂
6	(M,Slim,Red,Cotton)	1 (Size)	4	C ₁
7	(M,Reg,Blue,Poly)	4	1 (Size)	C ₂
8	(L,Reg,Blue,Cotton)	3 (Size,Fit,Color)	1 (Fabric)	C ₂

Clusters after Iteration 3:

•
$$C_1 = \{1,2,6\}$$

•
$$C_2 = \{3,4,5,7,8\}$$

Step 7. Update Modes

- Mode₁ stays (S,Slim,Red,Cotton)
- Mode₂ stays (L,Regular,Blue,Polyester)
- → No change → algorithm converged after 3 iterations.

Final Results

- Final modes (cluster representatives):
 - Cluster 1 → (S, Slim, Red, Cotton)
 - Cluster 2 → (L, Regular, Blue, Polyester)
- Cluster memberships:
 - $C_1 = \{1,2,6\}$
 - $C_2 = \{3,4,5,7,8\}$
- Total cost:
 - C_1 mismatches = 0 + 1 + 1 = 2
 - C_2 mismatches = 1 + 0 + 1 + 1 + 1 = 4
 - Total = 6 mismatches