
What it is (and why it exists)
K-Modes is the categorical-data sibling of k-means.
Where k-means uses means and squared Euclidean distance (which break on
strings/categories), k-modes uses:

Modes (most frequent category per feature) instead of means
Simple matching dissimilarity (count of mismatched categories) instead of
squared distance

This makes it ideal for data sets like survey responses, SKUs with attributes,
demographics, medical codes, etc.

Core definitions

1) Dissimilarity (distance)

For two categorical vectors and , the usual distance is

(You can optionally weight features: .)

2) Cluster representative (mode)

Given a cluster and feature , the mode is the category with highest frequency
in that feature within .
The cluster center is .

x = (x ​, … , x ​)1 p y = (y ​, … , y ​)1 p

d(x, y) = 1{x ​ =
j=1
∑
p

j  y ​}j

d ​(x, y) =w ​ w ​1{x ​ =∑j j j  y ​}j

C j m ​j

C
m = (m ​, … , m ​)1 p

1/13

K MODES CLUSTERING

 ~S S Roy,5th Sept,2025

3) Objective function (what k-modes minimizes)

i.e., the total number of within-cluster mismatches.

The algorithm (Huang, 1998) — step-by-step
1. Initialize modes (seeds):

Random: pick rows at random.
Huang: for each feature, sample categories proportionally to frequency to
build diverse, realistic seeds.
Cao: density-based seeding; spreads modes towards dense regions.

2. Assign each record to the nearest mode by simple matching dissimilarity.
3. Update modes: in each cluster, set each feature to its most frequent category

(break ties consistently, e.g., highest frequency across other features or
lexicographic).

4. Repeat assign ↔ update until modes don’t change (or cost stops improving).
Per-iteration cost: with rows, clusters, features.

A worked example (complete table + full first iteration)
We’ll cluster on a tiny retail-attributes dataset with four categorical columns:

Size ∈ {S, M, L}
Fit ∈ {Slim, Regular}
Color ∈ {Red, Blue, Green}
Fabric ∈ {Cotton, Polyester}

Example data table
ID Size Fit Color Fabric

1 S Slim Red Cotton

2 S Slim Blue Cotton

3 M Regular Blue Cotton

Cost(C ​, … , C ​) =1 k ​ d(x ​, mode of its cluster)
i=1
∑
n

i

k
k

O(nkp) n k p

k = 2

2/13

ID Size Fit Color Fabric

4 L Regular Blue Polyester

5 L Regular Green Polyester

6 M Slim Red Cotton

7 M Regular Blue Polyester

8 L Regular Blue Cotton

Initialization (random pick):
Mode₁ ← row 1 = (S, Slim, Red, Cotton)
Mode₂ ← row 4 = (L, Regular, Blue, Polyester)

First assignment step (simple-matching distance)

For each row, count feature mismatches vs each mode (0 = perfect match, 4 = all
different):

ID

to Mode₁
(S,Slim,Red,Cotton
)

to Mode₂
(L,Regular,Blue,Pol
y) Assign

1 0 4 C₁

2 1 (Color) 3 (Size, Fit, Fabric) C₁

3 3 (Size, Fit, Color) 2 (Size, Fabric) C₂

4 4 0 C₂

5 4 1 (Color) C₂

6 1 (Size) 4 C₁

7 4 1 (Size) C₂

8 3 (Size, Fit, Color) 1 (Fabric) C₂

Clusters after assignment:

C₁ = {1, 2, 6}
C₂ = {3, 4, 5, 7, 8}

3/13

Update modes
For C₁ (rows 1,2,6):

Size: S(2), M(1) → S
Fit: Slim(3) → Slim
Color: Red(2), Blue(1) → Red
Fabric: Cotton(3) → Cotton
Mode₁′ = (S, Slim, Red, Cotton) (unchanged)

For C₂ (rows 3,4,5,7,8):
Size: L(3), M(2) → L
Fit: Regular(5) → Regular
Color: Blue(4), Green(1) → Blue
Fabric: Polyester(3), Cotton(2) → Polyester
Mode₂′ = (L, Regular, Blue, Polyester) (unchanged)

Since modes didn’t change, the algorithm converges after one full iteration here.

Final cost (sum of distances to final modes)
C₁ distances: 0 (ID1) + 1 (ID2) + 1 (ID6) = 2
C₂ distances: 2 (ID3) + 0 (ID4) + 1 (ID5) + 1 (ID7) + 1 (ID8) = 5
Total cost = 7.

How to choose k
There’s no single “right” , but common practices:

1. Elbow on cost: run k-modes for and plot total cost; pick the elbow.
2. Holdout validation: train on a subset, compute assignment cost on a held-out

set; pick that minimizes held-out cost.
3. Stability: run multiple seeds; pick with high stability (e.g., high Adjusted Rand

Index across runs).
4. Silhouette-like scores for categorical data (using Hamming/simple-matching)

— useful but more nuanced than numeric silhouette.

Practical details & best practices
Initialization matters: use Huang or Cao seeds and multiple restarts to avoid
poor local minima.

k
k = 1, 2, …

k
k

4/13

Ties when updating modes: break deterministically (e.g., pick the category that
yields lower total cost, or a fixed order).
Feature scaling & weights: high-cardinality or business-critical fields can be up-
or down-weighted.
Missing values: treat missing as a special category (e.g., “NA”) or impute; be
consistent at train & inference time.
Unseen categories at inference: map to “other”/“rare” or nearest known
category by domain rules.
Encoding: Do not one-hot encode before k-modes; pass raw categorical labels
(strings or ints).
Mixed data: For numeric + categorical, use k-prototypes (extends k-modes + k-
means).
Complexity: Each iteration is ; k-modes is typically fast for tidy
categorical tables.

Minimal, readable Python

A. From-scratch, didactic k-modes (for learning)

O(nkp)

python

from collections import Counter
import random

def hamming(x, y):
 return sum(a != b for a, b in zip(x, y))

def mode_of_cluster(rows):
 # rows: list of tuples/arrays of categorical values with same length
 p = len(rows[0])
 mode = []
 for j in range(p):
 counts = Counter(r[j] for r in rows)
 # break ties by (freq desc, value asc) for determinism
 mode.append(sorted(counts.items(), key=lambda t: (-t[1], str(t[0])))[0][0])
 return tuple(mode)

def kmodes(X, k, max_iter=100, n_init=5, seed=None):
 rng = random.Random(seed)

5/13

Try it on the example:

 best = None
 for _ in range(n_init):
 # Huang-like start: pick k distinct rows as initial modes
 modes = [tuple(row) for row in rng.sample(X, k)]
 for _ in range(max_iter):
 # assign
 assigns = [[] for _ in range(k)]
 for row in X:
 dists = [hamming(row, m) for m in modes]
 j = min(range(k), key=lambda idx: (dists[idx], idx)) # tie-break by index
 assigns[j].append(row)
 # update
 new_modes = []
 for j in range(k):
 new_modes.append(mode_of_cluster(assigns[j]) if assigns[j] else modes[j])
 if new_modes == modes:
 break
 modes = new_modes
 # compute cost
 cost = sum(min(hamming(row, m) for m in modes) for row in X)
 if best is None or cost < best[0]:
 best = (cost, modes, assigns)
 cost, modes, assigns = best
 labels = []
 for row in X:
 dists = [hamming(row, m) for m in modes]
 labels.append(min(range(k), key=lambda idx: (dists[idx], idx)))
 return {"modes": modes, "labels": labels, "cost": cost}

python

X = [
 ("S","Slim","Red","Cotton"),
 ("S","Slim","Blue","Cotton"),
 ("M","Regular","Blue","Cotton"),
 ("L","Regular","Blue","Polyester"),
 ("L","Regular","Green","Polyester"),
 ("M","Slim","Red","Cotton"),
 ("M","Regular","Blue","Polyester"),
 ("L","Regular","Blue","Cotton"),
]

6/13

B. Production-ready library (quick & robust)

Install once: pip install kmodes

init='Huang' or init='Cao' are strong defaults.
Use n_init>1 to reduce sensitivity to starting seeds.

New points can be assigned via kmodes.predict(new_samples) .

Interpreting results
Modes tell the story: each mode is a “typical profile” for the cluster (e.g., (L,
Regular, Blue, Polyester) = stock keeping segment).
Within-cluster mismatch is the natural fit score: lower is better.
Per-feature mismatch rates help diagnose which attributes drive separation.

Common pitfalls (and quick fixes)

res = kmodes(X, k=2, n_init=10, seed=42)
print("Modes:", res["modes"])
print("Cost:", res["cost"])
print("Labels:", res["labels"])

python

from kmodes.kmodes import KModes

km = KModes(n_clusters=2, init='Cao', n_init=10, max_iter=100, random_state=42)
labels = km.fit_predict([
 ["S","Slim","Red","Cotton"],
 ["S","Slim","Blue","Cotton"],
 ["M","Regular","Blue","Cotton"],
 ["L","Regular","Blue","Polyester"],
 ["L","Regular","Green","Polyester"],
 ["M","Slim","Red","Cotton"],
 ["M","Regular","Blue","Polyester"],
 ["L","Regular","Blue","Cotton"],
])
print("Cluster modes:", km.cluster_centroids_) # modes per feature
print("Labels:", labels)
print("Cost:", km.cost_)

7/13

Many rare categories → collapse to “Other” or group by domain ontology.
Dominant features → apply feature weights (e.g., weight by inverse cardinality
or business importance).
Unbalanced clusters → consider different , better initialization (Cao), or feature
weights.
Mixed numeric/categorical → use k-prototypes instead of forcing everything to
categories.
Inconsistent preprocessing → ensure the same cleaning, category mapping,
and missing-value strategy for train & inference.

 Categorical data only? (If mixed, use k-prototypes.)
 Clean categories, handle missing, map rare to “Other”.
 Pick via elbow/validation/stability.
 Use Huang/Cao init and multiple restarts.
 Inspect modes to explain clusters; report total cost and per-feature mismatch

rates.

Further reading (for depth)
Z. Huang (1998). “Extensions to the k-means algorithm for clustering large data
sets with categorical values.” Data Mining and Knowledge Discovery.
Z. Huang (1997). “Clustering large data sets with mixed numeric and categorical
values.” Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery and
Data Mining (k-prototypes).

k

k

8/13

Imp points

K-Modes Worked Example with Multiple Iterations
We’ll use the same toy dataset:

ID Size Fit Color Fabric

1 S Slim Red Cotton

2 S Slim Blue Cotton

3 M Regular Blue Cotton

4 L Regular Blue Polyester

5 L Regular Green Polyester

6 M Slim Red Cotton

7 M Regular Blue Polyester

8 L Regular Blue Cotton

We’ll set k = 2 clusters.

Step 1. Initialization (choose 2 random seeds)
Let’s pick:

Mode₁ (initial) ← Row 2 = (S, Slim, Blue, Cotton)
Mode₂ (initial) ← Row 5 = (L, Regular, Green, Polyester)

These are less “clean,” so convergence takes longer.

9/13

Full worked out example of K Modes clustering for multiple iterations

Step 2. First Assignment
Compute mismatches for each row vs each mode:

ID
Row (Size, Fit,
Color, Fabric)

d to Mode₁
(S,Slim,Blue,Cotto
n)

d to Mode₂
(L,Regular,Green,P
oly) Assign

1 (S,Slim,Red,Cotton) 1 (Color) 4 C₁

2 (S,Slim,Blue,Cotton
)

0 4 C₁

3 (M,Reg,Blue,Cotton
)

2 (Size,Fit) 2 (Size,Fabric) C₁ (tie→C₁)

4 (L,Reg,Blue,Poly) 2 (Size,Fabric) 1 (Color) C₂

5 (L,Reg,Green,Poly) 3 0 C₂

6 (M,Slim,Red,Cotton
)

2 (Size,Color) 4 C₁

7 (M,Reg,Blue,Poly) 2 (Size,Fabric) 1 (Color) C₂

8 (L,Reg,Blue,Cotton) 2 (Size,Fabric) 1 (Color) C₂

Clusters after Iteration 1:

C₁ = {1,2,3,6}
C₂ = {4,5,7,8}

Step 3. Update Modes
Mode₁ (C₁ rows 1,2,3,6):

Size: S(2), M(2) → tie → pick S (tie-break fixed order)
Fit: Slim(3), Reg(1) → Slim
Color: Red(2), Blue(2) → tie → pick Blue
Fabric: Cotton(4) → Cotton
→ Mode₁′ = (S, Slim, Blue, Cotton)

Mode₂ (C₂ rows 4,5,7,8):
Size: L(3), M(1) → L
Fit: Reg(4) → Regular

10/13

Color: Blue(3), Green(1) → Blue
Fabric: Polyester(2), Cotton(2) → tie → pick Polyester
→ Mode₂′ = (L, Regular, Blue, Polyester)

Step 4. Second Assignment
Now compare all rows again vs updated modes:

ID Row

d to Mode₁′
(S,Slim,Blue,Cotto
n)

d to Mode₂′
(L,Reg,Blue,Poly) Assign

1 (S,Slim,Red,Cotton) 1 (Color) 3 (Size,Fit,Fabric) C₁

2 (S,Slim,Blue,Cotton
)

0 3 (Size,Fit,Fabric) C₁

3 (M,Reg,Blue,Cotton
)

2 (Size,Fit) 1 (Fabric) C₂

4 (L,Reg,Blue,Poly) 3 (Size,Fit,Fabric) 0 C₂

5 (L,Reg,Green,Poly) 4 1 (Color) C₂

6 (M,Slim,Red,Cotton
)

2 (Size,Color) 3 (Size,Fabric,Color) C₁

7 (M,Reg,Blue,Poly) 3 (Size,Fit,Fabric) 1 (Size) C₂

8 (L,Reg,Blue,Cotton) 2 (Size,Fit) 1 (Fabric) C₂

Clusters after Iteration 2:

C₁ = {1,2,6}
C₂ = {3,4,5,7,8}

Step 5. Update Modes Again
Mode₁ (rows 1,2,6):

Size: S(2), M(1) → S
Fit: Slim(3) → Slim
Color: Red(2), Blue(1) → Red

11/13

Fabric: Cotton(3) → Cotton
→ Mode₁″ = (S, Slim, Red, Cotton)

Mode₂ (rows 3,4,5,7,8):
Size: L(3), M(2) → L
Fit: Reg(5) → Regular
Color: Blue(4), Green(1) → Blue
Fabric: Polyester(3), Cotton(2) → Polyester
→ Mode₂″ = (L, Regular, Blue, Polyester)

Step 6. Third Assignment
Check again with new Mode₁″ and Mode₂″:

ID Row

d to Mode₁″
(S,Slim,Red,Cotton
)

d to Mode₂″
(L,Reg,Blue,Poly) Assign

1 (S,Slim,Red,Cotton) 0 4 C₁

2 (S,Slim,Blue,Cotton
)

1 (Color) 3 (Size,Fit,Fabric) C₁

3 (M,Reg,Blue,Cotton
)

3 (Size,Fit,Color) 1 (Fabric) C₂

4 (L,Reg,Blue,Poly) 4 0 C₂

5 (L,Reg,Green,Poly) 3 1 (Color) C₂

6 (M,Slim,Red,Cotton
)

1 (Size) 4 C₁

7 (M,Reg,Blue,Poly) 4 1 (Size) C₂

8 (L,Reg,Blue,Cotton) 3 (Size,Fit,Color) 1 (Fabric) C₂

Clusters after Iteration 3:

C₁ = {1,2,6}
C₂ = {3,4,5,7,8}

12/13

Step 7. Update Modes
Mode₁ stays (S,Slim,Red,Cotton)
Mode₂ stays (L,Regular,Blue,Polyester)

→ No change → algorithm converged after 3 iterations.

Final Results
Final modes (cluster representatives):

Cluster 1 → (S, Slim, Red, Cotton)
Cluster 2 → (L, Regular, Blue, Polyester)

Cluster memberships:
C₁ = {1,2,6}
C₂ = {3,4,5,7,8}

Total cost:
C₁ mismatches = 0 + 1 + 1 = 2
C₂ mismatches = 1 + 0 + 1 + 1 + 1 = 4
Total = 6 mismatches

S S Roy

