Step 1: Start with the Data

We are given two attribute vectors X and Y with 3 samples:

$$X = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad Y = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

These represent M = 2 attributes and N = 3 samples.

Step 2: Center the Data

To center means subtract the **mean** from each value.

Mean of X:

$$\bar{X} = \frac{1+2+3}{3} = \frac{6}{3} = 2$$

Mean of Y:

$$\bar{Y} = \frac{3+2+1}{3} = \frac{6}{3} = 2$$

Centered Vectors:

$$X' = X - \bar{X} = \begin{bmatrix} 1 - 2 \\ 2 - 2 \\ 3 - 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

$$Y' = Y - \overline{Y} = \begin{bmatrix} 3 - 2 \\ 2 - 2 \\ 1 - 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

Step 3: Create the Data Matrix

Let's combine the two centered vectors column-wise:

$$S = \begin{bmatrix} -1 & 1 \\ 0 & 0 \\ 1 & -1 \end{bmatrix}$$

This is our data matrix with shape 3×2 (3 rows = samples, 2 columns = attributes).

Step 4: Calculate the Covariance Matrix

Formula for covariance matrix:

$$C = \frac{1}{N}S^T S = \frac{1}{3}S^T S$$

Let's compute S^T first:

$$S^T = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$

Then:

$$S^{T}S = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 1 \\ 0 & 0 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} (-1)^{2} + 0^{2} + 1^{2} & (-1)(1) + 0(0) + 1(-1) \\ (1)(-1) + 0(0) + (-1)(1) & (1)^{2} + 0^{2} + (-1)^{2} \end{bmatrix}$$
$$= \begin{bmatrix} 1 + 0 + 1 & -1 + 0 - 1 \\ -1 + 0 - 1 & 1 + 0 + 1 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$$

Now divide by N = 3:

$$C = \frac{1}{3} \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & -\frac{2}{3} \end{bmatrix}$$

Step 5: Find Eigenvalues

We solve:

$$\det(C - \lambda I) = 0$$

So,

$$\det\left(\left[\frac{\frac{2}{3} - \lambda}{-\frac{2}{3}} \quad \frac{-\frac{2}{3}}{\frac{2}{3} - \lambda}\right]\right) = 0$$

$$\left(\frac{2}{3} - \lambda\right)^{2} - \left(-\frac{2}{3}\right)^{2} = 0$$

$$\left(\frac{2}{3} - \lambda\right)^{2} - \frac{4}{9} = 0$$

Let $x = \frac{2}{3} - \lambda$, so:

$$x^2 = \frac{1}{9} \Rightarrow x = \pm \frac{2}{3}$$

Then:

•
$$\frac{2}{3} - \lambda = \frac{2}{3} \Rightarrow \lambda = 0$$

•
$$\frac{2}{3} - \lambda = -\frac{2}{3} \Rightarrow \lambda = \frac{4}{3}$$

So:

$$\lambda_1 = 0$$
, $\lambda_2 = \frac{4}{3}$

Step 6: Find Eigenvectors

For $\lambda_1 = 0$:

Solve:

$$(C - 0I)\mathbf{u} = 0 \Rightarrow C\mathbf{u} = 0$$

$$\begin{bmatrix} \frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

From row 1:

$$\frac{2}{3}u_1 - \frac{2}{3}u_2 = 0 \Rightarrow u_1 = u_2$$

Take:

$$u^{(1)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, normalize it:

$$||u|| = \sqrt{1^2 + 1^2} = \sqrt{2}, \quad \mathbf{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

For $\lambda_2 = \frac{4}{3}$:

Solve:

$$(C - \lambda I)\mathbf{u} = 0 \Rightarrow (\begin{bmatrix} \frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} \end{bmatrix} - \frac{4}{3} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}) \mathbf{u} = 0$$
$$\Rightarrow \begin{bmatrix} -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = 0 \Rightarrow u_1 = -u_2$$

Take:

$$u^{(2)} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad //u // = \sqrt{2}, \quad \mathbf{u}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Step 7: Create the Eigenvector Matrix U

$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$
 (each column is a normalized eigenvector)

Step 8: Calculate Principal Components

$$P = S \cdot U$$

Recall:

$$S = \begin{bmatrix} -1 & 1 \\ 0 & 0 \\ 1 & -1 \end{bmatrix}, \quad U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

So,

$$P = \frac{1}{\sqrt{2}} \begin{bmatrix} (-1)(1) + (1)(1) & (-1)(1) + (1)(-1) \\ 0 & 0 \\ (1)(1) + (-1)(1) & (1)(1) + (-1)(-1) \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & -2 \\ 0 & 0 \\ 0 & 2 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & -\sqrt{2} \\ 0 & 0 \\ 0 & \sqrt{2} \end{bmatrix}$$

▼ Final Results Summary

Item	Value
Covariance Matrix	$\begin{bmatrix} \frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} \end{bmatrix}$
Eigenvalues	$\lambda_1 = 0, \lambda_2 = \frac{4}{3}$
Eigenvectors	$u_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, u_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Item	Value			
Principal Component Matrix	$\begin{bmatrix} 0 & -\sqrt{2} \\ 0 & 0 \\ 0 & \sqrt{2} \end{bmatrix}$			

☑ FINAL CONCLUSION: What Happened in Our PCA Analysis

@ Goal of PCA

The purpose of **Principal Component Analysis (PCA)** is to:

- **1.** Reduce **dimensionality** of data.
- 2. Find new axes (principal components) that:
 - Capture the **maximum variance** in the data.
 - Are **orthogonal** (uncorrelated).
 - Help interpret the underlying structure.

In our case, we had a 2D dataset (X and Y) with 3 samples.

Ⅲ Step-by-Step Outcome

1. We Centered the Data

We removed the mean from both X and Y so that the data is centered around the origin.

This is crucial because PCA depends on variance from the origin.

Result:

$$X' = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \quad Y' = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

2. We Computed the Covariance Matrix

The covariance matrix captures how X and Y vary with respect to each other.

We calculated:

$$C = \frac{1}{3} \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & -\frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} \end{bmatrix}$$

This tells us:

- Variance of X and Y: $\frac{2}{3}$
- Strong **negative correlation** between X and Y (cross terms = $-\frac{2}{3}$)

3. We Found Eigenvalues and Eigenvectors

We solved for:

- Eigenvalues $\lambda_1 = 0$, $\lambda_2 = \frac{4}{3}$
- **Eigenvectors** (directions of principal components):

•
$$\mathbf{u}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

•
$$\mathbf{u}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Interpretation:

- The first principal component direction u_2 (with eigenvalue $\frac{4}{3}$) captures all the variance.
- The second component u_1 (with eigenvalue 0) captures **no variance** it's redundant.

4. We Projected the Data to New Axes (PCA Transform)

Using matrix multiplication $P = S \cdot U$, we projected the data onto the new axes (principal components).

We obtained:

$$P = \begin{bmatrix} 0 & -\sqrt{2} \\ 0 & 0 \\ 0 & \sqrt{2} \end{bmatrix}$$

This is the transformed data in the new space.

What Does the Final Outcome Tell Us?

📌 1. Only One Meaningful Direction Exists

• All the variation in the original data lies **along one direction**, specifically:

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

 The second direction (perpendicular to this) has no spread — all projected values are 0.

📌 2. Dimensionality Reduction Is Possible

- We started with **2D data**.
- PCA shows that we can represent the **entire dataset in 1D** without losing any variance.
- This is compression without loss.

3. Decorrelation Achieved

- Original X and Y were **negatively correlated**.
- PCA transforms the data into **uncorrelated axes** (principal components).

Conclusion Summary

- We successfully applied PCA to a simple 2D dataset.
- We centered the data, computed the covariance matrix, and solved for eigenvalues/eigenvectors.

- The PCA transformation rotated the data such that all the variance is along **one** principal axis.
- This transformation allowed us to reduce the dimensionality from 2D to 1D while retaining 100% of the information.

This example demonstrates the core idea of PCA: rotate the data to align with its most informative directions and simplify it without losing key information.

PCA allows us to represent the **entire dataset** in **1D** (along one principal component) **without losing any variance**.

We'll demonstrate this in three exact steps:

Recap of the Key Values

We had:

Centered data matrix 5:

$$S = \begin{bmatrix} -1 & 1 \\ 0 & 0 \\ 1 & -1 \end{bmatrix}$$

Covariance matrix C (with division by N=3):

$$C = \frac{1}{3}S^{T}S = \begin{bmatrix} \frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} \end{bmatrix}$$

Eigenvalues:

•
$$\lambda_1 = 0$$

•
$$\Lambda_2 = \frac{1}{3}$$

So **total variance** in original data = sum of eigenvalues:

Total Variance =
$$\lambda_1 + \lambda_2 = 0 + \frac{4}{3} = \frac{4}{3}$$

Step 1: Show Variance Captured by Each Principal Component

We now project the data onto each principal component and compute **variance of** each.

Principal components matrix $P = S \cdot U$:

Where
$$U = \begin{bmatrix} \frac{1}{\sqrt{2}} & 1 \\ 1 & 1 \end{bmatrix}, \frac{1}{\sqrt{2}} & \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

We got:

$$P = \begin{bmatrix} 0 & -\sqrt{2} \\ 0 & 0 \\ 0 & \sqrt{2} \end{bmatrix}$$

Let's extract each component:

• **First Principal Component** (PC1) — column 1 of *P*:

$$PC_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \text{Variance} = 0$$

• **Second Principal Component** (PC2) — column 2 of *P*:

$$PC_2 = \begin{bmatrix} -\sqrt{2} \\ 0 \\ \sqrt{2} \end{bmatrix}$$

Now compute variance of PC2:

Mean of PC2 =
$$\frac{-\sqrt{2}+0+\sqrt{2}}{3}$$
 = 0
Variance = $\frac{1}{3}[(-\sqrt{2})^2+0^2+(\sqrt{2})^2]=\frac{1}{3}(2+0+2)=\frac{4}{3}$

- Variance in original data:

 -

 -
- Variance in PC2 (the only informative component): $\frac{4}{3}$
- Variance in PC1 (discarded component): 0
- All the variance is captured in PC2.

Step 3: Explain Why This Means Dimensionality Reduction Without Loss

- The original data was 2-dimensional (X and Y).
- PCA transformed it to new axes: PC1 and PC2.
- Only PC2 has non-zero variance, i.e., all spread, all information is along PC2.
- PC1 = $0 \Rightarrow$ no useful information exists in that direction.

Thus, we can safely discard PC1 and retain only PC2:

New 1D representation =
$$PC_2 = \begin{bmatrix} -\sqrt{2} \\ 0 \\ \sqrt{2} \end{bmatrix}$$

From this **1D vector**, we can **reconstruct the original centered data** using:

$$\widetilde{S} = PC_2 \cdot (u_2)^T = \begin{bmatrix} -\sqrt{2} \\ 0 \\ \sqrt{2} \end{bmatrix} \cdot (\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \end{bmatrix}) \Rightarrow \begin{bmatrix} -1 & 1 \\ 0 & 0 \\ 1 & -1 \end{bmatrix}$$

 \bigvee Exactly matches original centered matrix S!

Conclusion (Proven)

- All original variance is preserved in just 1 principal component (PC2).
- The **first component** has **0 variance** and can be discarded.
- We successfully **reduced dimensions from 2D to 1D**.
- The **entire dataset** can be perfectly represented in this **single direction**, with **no loss of information**.