+ Step 1: Start with the Data

We are given two attribute vectors X and Y with 3 samples:

1 3
X=12|, Y=]2
3 1

These represent M = 2 attributes and N = 3 samples.

+ Step 2: Center the Data

To center means subtract the mean from each value.

== Mean of X:
- 1+2+3 6
X=—2"-=2=2
3 3
= Mean of Y:
- 3+2+1 6
== Centered Vectors:
1-2 -1
X=X-X=12-2]1=1|0
3-2 1
i 3-2 1
Y =Y-Y=12-2]1=1|0
1-2 -1

* Step 3: Create the Data Matrix

Let's combine the two centered vectors column-wise:

-1 1
S=({0 O
1T -

This is our data matrix with shape 3 X 2 (3 rows = samples, 2 columns = attributes).



+ Step 4: Calculate the Covariance Matrix

Formula for covariance matrix:

_1 T _1 T
C= NS S= §S S
Let's compute S first:
10 1
S'=0y g ]
Then:
-1 1
_~1 0 1. _ (—-1)?+ 0% +12 (=1)(1)+0(0) + 1(=1)
5=l o ] [? _01]‘[(1)(—1)+0(0)+(—1)(1) (12 +0% +(-1)2 ]

[’I+O+1 —’I+O—1]_[2 —2]
-1+0-1 1+0+11 2 2

Now divide by N = 3:

1.2

C 2.5 7
_§[_2 2]_[_% %3]

» Step 5: Find Eigenvalues

We solve:
det(C-AI)=0
So,
2_) -2
det([3_, 3}\])_0
3 3
2 2 22
(§ A) —( §) =0
2 % 4
(§ A) 9" 0

LetXx = £ — A, so:

wiN
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» Step 6: Find Eigenvectors

ForA, = 0:
Solve:
(C-0)u=0=Cu=0
2 2
EA LT AR
[ Z10,0= ()
From row 1:
=Uu —gu =0=>u u
3~ 32 1 2
Take:
1) — 1 . e,
u —[1], normalize it:
Nul =vV12+12=+2, u =
_ 4,
ForA; = 3:
Solve

-2 -2y,
=02 2, 1=0=u=-u
3 3 Y2



lake:
U()—[1] //u//—\/f U——’I [1]
-1 ' 2 \/z_']

+ Step 7: Create the Eigenvector Matrix U

Sl-sl-

U=|[ ] (each columnis a normalized eigenvector)

S-Sl

» Step 8: Calculate Principal Components
P=S-U

Recall:

So,

1 [(—1)(1)+(1)(1) DM +MED 1 [0 -2
P=— 0 0 =— 10 o0
VZ [+ Ena) Mm+EneEn] V2o 2

0 -2
P=[O o\
0 2

["4 Final Results Summary

Item Value
Covariance Matrix 2 -2
[5 2]
3 3
; = =4
Eigenvalues Ay =0,A; =3

Eigenvectors



Item Value

Principal 0 -v2
Component Matrix 0 0
0 V2

("4 FINAL CONCLUSION: What Happened in Our PCA
Analysis

@ Goal of PCA

The purpose of Principal Component Analysis (PCA) is to:

1. Reduce dimensionality of data.

2. Find new axes (principal components) that:
e Capture the maximum variance in the data.
e Are orthogonal (uncorrelated).

e Help interpret the underlying structure.

In our case, we had a 2D dataset (X and Y) with 3 samples.

.| Step-by-Step Outcome

("4 1. We Centered the Data




we removead the mean rrom both A and Y so that the data Is centered arouna the
origin.

This is crucial because PCA depends on variance from the origin.

Result:

|
—_—
—_—

?’f'\‘g/i.‘
v

2. We Computed the Covariance Matrix

The covariance matrix captures how X and Y vary with respect to each other.

We calculated:

(_':1_ 2 -2

2 2

[ 1=13% 7]

32 2 ¢
This tells us:

e Varianceof Xand: %

e Strong negative correlation between X and Y (cross terms = —%3)

4 3. We Found Eigenvalues and Eigenvectors
We solved for:

e EigenvaluesA; =0,A, = %

e Eigenvectors (directions of principal components):

1
. U1:%[1]

e Uy = % [_11]
Interpretation:
e The first principal component direction U; (with eigenvalue %) captures all the
variance.
e The second component U (with eigenvalue 0) captures no variance — it's
redundant.



w4 4. WWe Frojected the Data to New AXes (FLA Iranstorm)

Using matrix multiplication P = S - U, we projected the data onto the new axes

(principal components).

We obtained:

0 -2
p=]0 0
0 V2

This is the transformed data in the new space.

“2 What Does the Final Outcome Tell Us?

s 1. Only One Meaningful Direction Exists

e All the variation in the original data lies along one direction, specifically:

1T 1
ﬁ[_r]]

e The second direction (perpendicular to this) has no spread — all projected

values are 0.

s 2. Dimensionality Reduction Is Possible
e We started with 2D data.

e PCA shows that we can represent the entire dataset in 1D without losing any

variance.

e Thisis compression without loss.

o 3. Decorrelation Achieved

e Original X and Y were negatively correlated.

e PCA transforms the data into uncorrelated axes (principal components).

7] Conclusion Summary
e We successfully applied PCA to a simple 2D dataset.
e We centered the data, computed the covariance matrix, and solved for

eigenvalues/eigenvectors.



e Ine rFPLATranstormation rotated the data such that all the variance Is along one
principal axis.

e This transformation allowed us to reduce the dimensionality from 2D to 1D
while retaining 100% of the information.

This example demonstrates the core idea of PCA: rotate the data to align with its

most informative directions and simplify it without losing key information.

"4 PCA allows us to represent the entire dataset in 1D (along one principal
component) without losing any variance.

We'll demonstrate this in three exact steps:

' Recap of the Key Values
We had:

Centered data matrix S:

-1 1
S=({0 O
1T -

Covariance matrix C (with division by N = 3):

N

C=5S"S=]

w| =
w

wing |
(W]
e

WIN

Eigenvalues:
° A’] =0



o /l2=§

So total variance in original data = sum of eigenvalues:

Total Variance=A1 +A, =0+

Wl b
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.4 Step 1: Show Variance Captured by Each Principal Component

We now project the data onto each principal component and compute variance of
each.

Principal components matrix P = S - U:
1 1
=1L A
Where U = [-=[;1, 55 [_41]

We got:

0 -2
P=|0 0
0 V2

Let's extract each component:

e First Principal Component (PC1) — column 1 of P:

0
PC, = lO] = Variance =0

0
e Second Principal Component (PC2) — column 2 of P:

-2

PCZ = 0
V2

Now compute variance of PC2:
- +0+
Mean of PC2 = V2 30 \/Z=O

Variance = % [(—-v/2)? + 0% + (v/2)?] = %(2 +0+2)=

Wl s~

("4 Step 2: Verify Total Variance Is Preserved



¢ Variance in original data: 3
e Variance in PC2 (the only informative component): g

e Variance in PC1 (discarded component): 0

4 All the variance is captured in PC2.

14 Step 3: Explain Why This Means Dimensionality Reduction
Without Loss

e The original data was 2-dimensional (X and Y).

e PCAtransformed it to new axes: PC1 and PC2.

e Only PC2 has non-zero variance, i.e., all spread, all information is along PC2.
e PC1=0= no useful information exists in that direction.

Thus, we can safely discard PC1 and retain only PC2:
-2

New 1D representation=PC, = | O

V2

From this 1D vector, we can reconstruct the original centered data using:
2 -1 1

~ B 1
S=PC-(u)'=| 0 | (—=[1 -1)=]|0 o0
Va2 | V2 1 -1

{74 Exactly matches original centered matrix S!

“z Conclusion (Proven)

* All original variance is preserved in just 1 principal component (PC2).

e The first component has 0 variance and can be discarded.

e We successfully reduced dimensions from 2D to 1D.

e The entire dataset can be perfectly represented in this single direction, with no
loss of information.






