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\/The multi-ar med bandit is asimple version of reinforcement learning where you choose actions

to balance trying new things (exploration) and picking the best-known option
(exploitation).Algorithms like UCB and Thompson Sampling help decide which action to take
by either being optimistic or using probability. These ideas are used in bigger RL problemS to choose
actions and improve learning over time.

1) Multi-Armed Bandits (Exploration—-Exploitation)

Core concept

Choose among k actions (arms) with unknown reward distributions to maximize expected

cumulative reward. No state transitions, only action selection and immediate rewards.

Variables

k: number of arms

a € {1,...,k}: action/arm

R;: reward at time t after choosing A;

Q:(a): estimate of action value (expected reward) for arm a at time ¢

N¢(a): number of times arm a has been selected up to time ¢

Equations (action value & selection)

Sample-average estimate:
Quit(a) < Qula) + 5 (R~ Qul@)
t+1(a) < Ji(a ~ 7 Uit — e(a
’ Ni(a)
g-greedy: with prob. 1 — € choose arg max, @Q;(a), else random explore.

UCBT1 (optimism via confidence term) (choose at time {):





A; = arg max [Qt(a) + ¢4/ ]\}f(fz) }

(UCB family presented in the text as a principled exploration strategy.)

Conceptual example

Headline testing: show one of k titles; click = reward 1, no click = 0. The learner explores

new titles (€) and exploits the best so far.

Numerical example (2-armed)

e True (unknown) means: Arm 1: 3 = 0.4, Arm 2: s = 0.6.

e Initialize @1(1) = @1(2) =0, N1(1) = N1(2) =0, € =0.1.
e t=1: both equal — tie-break: pick arm 1. Suppose R; = 1.

Ny(1) =1, @(1) =0+ (1 -0) =1, Qx(2) = 0.
o t=2 (exploit): pick arm 1 (since 1>0). Suppose Ry = 0:
N3(1) =2, Q3(1) =1+ 3(0—1) = 0.5.
e t=3 (maybe explore with prob 0.1; if exploit): pick arm 1 (0.5>0). Suppose R3 = 0:
Q4(1) = 0.5+ 3(0—0.5) = 0.333...
Over time, e-greedy/UCB will shift more pulls to arm 2 as evidence grows. (UCB would

also try the under-sampled arm 2 early due to the confidence bonus.)

2) Finite Markov Decision Processes (MDPs)

Core concept

Sequential decision problems where the next state and reward depend only on current

state and action (Markov property). Defines the RL interface.

Variables
e S:setofstates, s € S
e A(s): actions available in state s
e p(s',r | s,a): dynamics (transition/reward model)
e m(a | s): policy (probability of action a in state s)
e v € 10,1): discount factor
o Gy =0 Y Riipi1:retun
o v, (s) =E;[G: | St = 8] qx(s,a) = E;[Gt | St = s, A; = q

Equations (Bellman)

e Bellman expectation (state values):



v (8) = Zﬂ'(a | 5) Zp(s’,r | s,a)[r + v ()]

a s',r

e Bellman optimality:

V4(8) = mapr(s',r | s,a)[r + yv.(s)],
sl,r
q(s,a) = Zp(s',r | s,a) [r +vymaxg.(s',a')].
s/

(Uniqueness of solution for finite MDPs.)

Conceptual example

2-room robot: choose to “work” (reward now, risk battery drain) or “recharge” (no

immediate reward, but better future).

Numerical example (2-state tiny MDP)
States { A, B}, single action per state (for simplicity).
Transitions/Rewards:
e From A - to B with reward 42 (prob 1).
e From B — to A with reward +1 (prob 1).
Lety = 0.5. Find v, (A4) = v(A), v«(B) = v(B) (here optimal=only policy).

Bellman equations:
v(A) =2+yv(B) =2+0.5v(B), v(B)=1+~v(A)=1+0.5v(4).

Solve simultaneously: Substitute v(B) = 1 + 0.5v(A) into first:
v(A) =2+0.5(1+0.5v(A)) =2+ 0.5+ 0.25v(A) = 0.75v(A) = 2.5 =

v(A) = #5 =33

Thenv(B) =1+ 0.5(3.3) = 1+ 1.6 = 2.6.

This directly matches Bellman optimality for deterministic dynamics.

3) Dynamic Programming (DP)

Core concept

Model-based solution when p(s’, 7 | s, a) known: iteratively evaluate a policy and

improve it until optimal.

Variables

e vi(s): k-th iterate of value for policy 7



e 7'(s): improved greedy policy wrt g,

Equations

e Policy evaluation:
visa(s) = D _m(als) > p(s',r | s,0)[r+yo(s))].

e Policy improvement:

7'(s) = arg mngp(s', r|s,a)[r+yve(s)].
s',r

e Policy iteration: alternate evaluation & improvement.

e Value iteration:
vpr1(8) = ml?pr(s', r|s,a)[r+yop(s')].
s',r
(These are the canonical DP updates in the text.)

Conceptual example

Gridworld with known transitions: compute values by sweeping the grid until

convergence, then act greedily.

Numerical example (policy evaluation, 2-state)

Use the MDP from #2 and a stochastic policy: in A, do action that still leads to B with prob
1; in B, same back to A.

Initialize v9(A) = vo(B) = 0. One sweep of evaluation:

v1(4) = Zp(s',fr | A)[r + yvo(s')] =2+ 0.5v(B) = 2.
v (B) =1+ 0.5v9(A4) = 1.
Second sweep:
v2(A) =2+ 0.5v1(B) =2+ 0.5 = 2.5,
vo(B)=1405v(4)=1+1=2,..

This sequence converges to the exact solution computed earlier.

4) Monte Carlo (MC) Methods

Core concept



Learn value functions from complete episodes without a model; average returns observed

after visiting a state (first-visit or every-visit).

Variables

e Gy return from time ¢ to end of episode

e V(s): estimate of state value as average of returns observed after s

Equation (first-visit MC prediction)

V (s) < average of G; over first visits to s.

Conceptual example

Blackjack: play many full hands; for each state (sum, dealer card, usable ace), average

win/lose returns.

Numerical example (toy episodic chain)

Episodic chain: Sy — S7 — Terminal. Rewards: +1 on final transition only. v = 1.

Episode 1 states: Sy, S7 with terminal reward +1.

e First-visit returns: G(S1) = +1 (from its time), G(Sp) = +1.

o After 1 episode: V(Sp) =1, V(S51) = 1.
Episode 2: suppose same trajectory but terminal reward 0 (stochastic). Now returns:
G(S1) = 0, G(S,) = 0.

e Averages (every-visit): V(Sp) = (1+0)/2 = 0.5, V(S1) = 0.5.
This illustrates the MC averaging principle.

5) Temporal-Difference (TD) Learning

Core concept

Update values after each step using bootstrapping from the next state’s current estimate.

Works online without a model.

Variables

e (o step size

e TDerror:0; = Ryiq + YV (Sii1) — V(S)

Equation (TD(0) prediction)
V(St) < V(St) + OZ[RH_l + 7V(St+1) — V(St)] .

(Sarsa and Q-learning below are TD control variants.)



Conceptual example

Random walk: value of each nonterminal state is updated toward the neighbor’s estimate

plus reward.

Numerical example (single TD update)
From state s to 8’ with R =2, v = 0.5, a = 0.1, V(s) = 3.0, V(s') = 4.0
0=2+4+05-4-30=2+2—-3=1.
V(s) +3.0+0.1-1=3.1,

One step closer to bootstrapped target.

6) TD Control: SARSA (on-policy) & Q-Learning (off-policy)

Core concept
Learn action-values Q(s, a) and improve a policy while acting.

e SARSA learns the value of the behavior policy (on-policy).

e Q-Learning learns the greedy target regardless of behavior (off-policy).

Variables

e (s, a): action-value estimate
o A’:next action actually taken (SARSA)

e maxy Q(S’,a’): greedy next value (Q-learning)

Equations
e SARSA:

Q(S,4) + Q(S,A) + a[R+vQ(S", 4) — Q(S, 4)].

e Q-Learning:
Q(S? A) — Q(S7A) + O.’[R + ’Yma,'XQ(SI7aI) _ Q(S7 A)} :
(These are the canonical tabular one-step TD control rules.)

Conceptual example

Windy Gridworld: SARSA learns a robust path under its exploratory behavior; Q-Learning
aims for the greedy optimal path.

Numerical example



Suppose Q(S,A) =5.0, R=1,v=10.9, a =0.2.
e SARSA: given Q(S5’, A") = 4.0
Target =14 0.9 -4 = 4.6.
Update = 5.0 + 0.2(4.6 — 5.0) = 5.0 — 0.08 = 4.92.
e Q-Learning: given max, Q(S’,a’) = 6.0:
Target=1+0.9-6 = 6.4.
Update = 5.0 4+ 0.2(6.4 — 5.0) = 5.0 + 0.28 = 5.28.

Different targets reflect on- vs off-policy nature.

7) n-Step Returns & TD(A) with Eligibility Traces

Core concept

Blend multi-step returns to trade bias/variance and speed credit assignment. Eligibility

traces keep a decaying memory of visited states, updating many at once. (Chapter 7)

Variables
e ) €0, 1]: trace-decay parameter

o ¢4(s): eligibility trace for state s at time ¢

Equations (forward view sketch)

e A-return (weighted mix of n-step returns):

GV =@1-2NY rel.
n=1

e Backward view (tabular TD(MA)):
ei(s) =yhe1(s) + 1{S; = s}, V(s) « V(s) + ad;els),

with (5,5 = Rt+1 + ’}/V(St_H) — V(St)
(These are the standard forms covered in Chapter 7's forward/backward equivalence

discussion.)

Conceptual example

Maze learning: TD(A) quickly propagates credit back along the whole path after a good

outcome.

Numerical example (short trajectory)

Trajectory: So — S1 — S (terminal).
Lety = 0.9, A = 0.8, o = 0.1.



Initial V'(Sp) = 2.0, V(S1) = 1.0, V(S3) = 0. Rewards: Ry = 0 (to S1), Ry = 5
(terminal).
Step t=0:
e =R +9V(S1) -V (Sy)=0+09-1—-2=-1.1
e €0(Sy) = 1, others 0.
Updates: V'(Sp) < 2+ 0.1(—1.1)(1) = 1.89.
Step t=1:
e 5,=Ry+V(S) - V(1) =5+0—1.0=4.0
e Traces:
e1(So) = YAep(Sp) =0.9-0.8-1 =10.72,
e1(S1) =1
Updates:
e V(S51)«+1.0+0.1(4.0)(1) =14
e V(Sp) + 1.89+0.1(4.0)(0.72) = 1.89 + 0.288 = 2.178.

Credit spreads to both states immediately (backward view).

8) Planning & Learning Integration (Dyna)

Core concept

Unify model-free learning with model-based planning: learn a model from experience,
then do simulated updates in between real steps (e.g., Dyna-Q, prioritized sweeping).

Planning, acting, and model learning form a loop.

Variables
e Learned model p(s',7 | s,a)

e Planning updates: additional TD backups using simulated transitions

Algorithm sketch (Dyna-Q cycle)
1. Real step: observe (S, A, R, S’), do Q-learning/SARSA update.
2. Update model entry p(S", R | S, A).

3. k planning sweeps: sample past (s, a), query model for (s',7), do extra TD updates.

Conceptual example

Robot vacuum: after a bump, it updates the map (model) and runs quick internal rollouts

to refine Q-values before moving again.

Numerical example (single planning step)



Assume tabular Q-learning, @ = 0.5, v = 0.9.

Real experience: from S via A, got R = 2to S’; current Q(S, A) = 1, Q(S’, ) has
max 3.

Real update: Q(S, A) <~ 1+0.5(2+0.9-3—-1) =1+0.53.7—-1) =1+

1.35 = 2.35.

Model stored: p(S’,2 | S, A) = 1.

Planning: sample the same (S, A) from the model; redo the same Q-update (like an extra
replay), pushing Q further toward its target. Prioritized sweeping would focus such replays

where changes are largest.

9) Function Approximation (Large State Spaces)

Core concept

Replace tables by parameterized approximators (linear features, tile coding, neural nets).

Learn parameters by stochastic gradient on TD errors.

Variables
e Feature map z(s) € R?
e Weights w € R?

e Approximate value 9(s,w) = w ' z(s)
Equations (semi-gradient TD(0))

w <+ w+a[R+y5(S,w) — (S, w)| Vyd(S,w) = w+ adz(S).
(Linear case gradient is z(.5).)

Conceptual example

Mountain-Car / Tile coding: many positions/speeds; tile features let local generalization

work with linear learners.

Numerical example (linear features)

Let z(S) = [1, s]' (bias + scalar feature), w = [0.5, 1.0]".
Current state s = 2 = (S, w) = 0.5 +1.0-2 = 2.5.
Next state s’ = 1 = 0(S',w) =0.5+1.0-1=1.5.
Reward R =1, v =10.9, a = 0.1.

§=R+v5(S,w) —6(S,w) =1+0.9-1.5—-25=1+1.35 — 2.5 = —0.15.



Gradient = z(S) = [1,2]".

Update: w « [0.5,1.0] + 0.1(~0.15)[1,2] = [0.5 — 0.015, 1.0 — 0.03] =
[0.485, 0.97).

New 0(S,w) = 0.485 + 0.97 - 2 = 2.425 (moved toward target).

10) Policy Gradient & Actor—Critic

Core concept

Directly optimize the policy 7my(a | $) using gradient ascent of performance J ().
Actor—Critic uses a value function (critic) to reduce variance while the actor updates policy

parameters. (Chapter 11 introduces actor—critic.)

Variables

e 0: policy parameters
e my(a | s): differentiable policy (e.g., softmax or Gaussian)
o b(s): baseline (often V (s)) to reduce variance

A

e A(s,a): advantage estimate ~ Q(s,a) — V(s)

Canonical gradient (REINFORCE idea with baseline)
VoJ(0) = E[Vylogme(A|S) A(S, 4)].

Actor—Critic online update (one step):
e CriticTDerrord = R +~V(S';w) — V(S;w)
e Value update: w < w + ay 6 Vo, V(S5 w)
e Policy update: @ < 6 + ar § Vglogme(A | S)

Conceptual example

Two-action softmax bandit: learn probability of choosing Left vs Right directly via

gradient feedback.

Numerical example (softmax bandit, single update)
Two actions a € {1,2}. Preferences hg(a) define softmax policy:

eh(a)

m(e) = T T eh@)”

Let h(1) = 0.0, h(2) = 0.0 = 7(1) = w(2) = 0.5. Choose a = 1, observe R = 1
(baseline 0 for simplicity).

Gradients for softmax (two-action case):



Viaylogm(1l) =1 —7(1) = 0.5, Ve logn(l) = —n(2) = —0.5.
With a; = 0.1, update preferences:
h(1) «~~0+4+0.1-1-0.5=0.05, h(2)«0+0.1-1-(—0.5) =—0.05.
New policy:

e 1.0513
€005 | =005 7 10513 + 0.9512

m(1) = ~ 0.525, m(2) ~ 0.475.

The policy shifts toward the rewarding action. (Actor—critic would use ¢ as the signal.)

(Helpful) Exploration Strategies Summary (from Bandits & Control)
e ¢e-greedy: simple and effective; persistent exploration.
e Optimistic initialization: initial high Q to drive early exploration.

e UCB: balances exploration via confidence bonus; efficient in stationary bandits.

(Helpful) How Value Functions Connect to Optimal Actions
e If you know v,(s), one-step greedy w.r.t. v, is optimal.

e If you know g, (s, a), choose arg max, g (s, a) directly (no one-step lookahead
needed).

Final Notes

e Bellman equations are the backbone (definitions & optimality).
e TD learning is the practical engine for online learning.
e Dyna shows planning = learning with simulated experience.

e Function approximation is essential in large problems.



