Explanation of the Above Concepts in Relation to Reinforcement
Learning and the Associated Equations

This section provides a clear understanding of how the previously introduced concepts —
such as the agent-environment interaction, states, actions, and rewards — form the
foundation of Reinforcement Learning (RL). It also explains how these components are
mathematically represented through the related equations that describe the agent’s learning
objective and behavior within the Markov Decision Process (MDP) framework.

1. Multi-Armed Bandit Problem(Exploration vs Exploitation)

Casino slot machines have a playful nickname - "one-armed bandit” - because of the single
lever it has and our tendency to lose money when we play them. They also inspire the creativity
of researchers.

‘.
B

Source: https://surl.li/fnitaf

Multi-Armed Bandit Problem

e Meaning:
o A generalization of a slot machine (“one-armed bandit”) to multiple levers,
each with different, unknown payout probabilities.

e Goal:
o Decide which lever to pull at each step to maximize total reward over time.
e Challenge:

o You don’t know which lever pays best without trying them.

o Each pull gives limited information — must balance learning and earning.
o Core Dilemma — Exploration vs. Exploitation:

o Exploration: Try different levers to discover payoffs.

o Exploitation: Choose the lever that seems best so far.

o Too much exploration = wasted pulls; too little = missed better rewards.

Prepared by S S Roy (Oct 26", 2025)

https://surl.li/fnitaf

o Historical Note:
o Originated during World War Il in sequential decision research.
o Considered so hard that scientists joked about dropping it over Germany to
distract enemy researchers.
e Modern Importance:
o Still a major research area (e.g., many papers at NIPS 2015).
o Foundation of Reinforcement Learning (RL) — learning by trial and error,
not labeled data.
o Key Focusin RL:
o Addresses the exploration—exploitation trade-off — how to divide effort
between discovering new options and maximizing known rewards.
o Applications:
o Online ads, A/B testing, recommendation systems, and clinical trials.

Equations (action value & selection)
* Sample-average estimate:
Qt+1(a) + Qi(a) + — (Rt — Qi(a))
Ni(a)
» e-greedy: with prob. 1 — & choose arg max, (¢(a), else random explore.

* UCB1 (optimism via confidence term) (choose at time £):

A = arg max {Qr(a} + cav.-fﬁ } .

:"'-':{ujl

(UCB family presented in the text as a principled exploration strategy.)

Variables B Sample-Average Update
o k- number of arms (options}l . 1
v ¢ {L...,k} -anaction/am index, Qala) = Qela) + m(ﬂf - la))

¢ A -am chosen attime ¢,

Ry~ rovard received afer pling 4 + Updates the estimated value ();(a) toward the newly abserved reward,

 (4{a) - curent esimate of expected rward (mean payof) forama, + Thestep 1/ Ny(a) ensures it becomes the average of all past rewards for that am.

v Ni(a) - number of times arm a has been selected up to time £, * Warksbest forsatonary payots (esns dont change)

Prepared by S S Roy (Oct 26", 2025)

UCB1 (Upper Confidence Bound)

B &-Greedy Action Selection
+ With probability 1 — : choose the greedy arm / lnt
a = argmay, ((a). Ai=arg e Qrlo) + E\n‘ m

With probahility : pick a random arm.

* Balances exploitation (use best-known arm) and exploration (try others) * Chooses arm with highest optimistic estimate.

¢ ()¢{a): curent mean reward (exploitation).

LY % exploration bonus — bigger for less-tried arms.

+ ¢ controls exploration strength,

* Simple and widely used baseline policy.

+ Ensures directed exploration and gives low regret for stationary problems.

Summary:

s ():(a): learns expected payoff (by averaging rewards).
s e-greedy: random exploration.

s UCB: confidence-based exploration.

Together, they capture the exploration—exploitation trade-off central to reinforcement learning.

2. Finite Markov Decision Process(MDP)

Introduction - Finite Markov Decision Processes (MDPs)
+ Concept
+ Extension of the Multi-Armed Bandit problem.
s Dedsions depend not only on actions but also on the current state (context).
* Purpose:
= Models sequential decision-making, where each action affects:
* |Immediate rewards, and
s Future states and their rewards.
* Core Idea:
+ Agent must balance immediate vs. delayed rewards to achieve optimal long-term performance.
* Difference from Bandits:
= Bandits estimate a single value per action = J(a).
s MDPs estimate a value per state-action pair — ¢ (s, a).
s Alternatively, they can estimate state value assuming optimal actions = ©*(s).

* Goal:
* Learn accurate value estimates (v"(s), q" (s, a)) to assign credit for actions whose cutcomes occur
over time.

Prepared by S S Roy (Oct 26", 2025)

State

Agent

Reward
Ry

Ry

<€

St

Environment

Action
A,

Source: The Agent-Environment interaction process in an MDP (Adapted from Sutton and Barto Fig 3.1)

The Agent-Environment Interface (MDP Framework)

+ 1. Agent: The leamer and decision-maker that selects actions to maximize cumulative rewards over

time.

+ 2. Environment: Everything external that responds to the agent's actions by providing new states and

rewards.

* 3. State (S3): The current situation or observation the agent receives from the environment at time 1.

* 4 Action (A;): The decision the agent makes based on the current state.

* 5. Reward & Transition: After action Ay, the agent receives a reward ([;. 1) and moves to a new state (

S¢.1), continuing the interaction cycle.

Prepared by S S Roy (Oct 26", 2025)

Torque Sensor

6-Axis FT Sensor

Source : A robot arm with force and torque sensors forms an MDP where sensor readings
represent the state, and actions control the arm’s movement to accomplish tasks like
grasping an object. (Adapted from the Reach Robotics Blog.)

Bl sensors and Measurements:

The robotic arm is equipped with torque sensors (T, Tz, Ta) and a 6-axis force/torque (FT) sensor that
measures forces (F,, F. F_Z) and torgues (T,, T, T_z) at the end-effector, along with a grip sensor to
detect gripping force (F_G).

B Function and Feedback:

These sensors provide real-time feedback on the mechanical interaction between the arm and its
environment—detecting load, contact pressure, and crientation during movement or object
manipulation.

[E)l Relevance to RL and MDPs:

The sensor readings define the state of the system, while control commands {joint torques or motor
inputs) represent actions. The goal {e.q., successful object grasp) serves as the reward, forming an MDP

framework for learning optimal control policies.

Prepared by S S Roy (Oct 26", 2025)

MDP->

Core concept

Sequential decision problems where the next state and reward depend only on current

state and action (Markov property). Defines the RL interface.

Variables
e S:setofstates, s © &
+ A(s): actions available in state s
« p(s',r | s,a) dynamics (transition/reward model)
« w(a | s): policy (probability of action a in state s)
« & [0,1): discount factor
o Gy=X7 4 Ry g return
o vp(s) = (G | S; = 8], gz (5,a) = E[G; | S,

Equations (Bellman)

s Bellman expectation (state values):

v.(s) = er{r:e. | 5) Zp[s’,r | 5,a

* Bellman optimality:

8, "'qt H".

M+ yua(s')]

v, (s) = mngp[s’,r | s,a)|r -+ yv.(s)],

a.r

g.(s,a) = E p(s',r | s,a)|r + ymaxg.(s',a’) .
an’
&.r

(Unigueness of solution for finite MDPs.)

Prepared by S S Roy (Oct 26", 2025)

Variables and Their Meaning (MDP Section)

e S5 Setofstates
All possible situations the agent can be in.

— Example: robot's location in a grid.

* 5 & & - Current state
Represents the environment's condition at time {.

» A(s) - Set of actions available in state s
What the agent can do in that specific state.

— Example: move left, right, up, or down.

e p(s',r | s, a) - Transition probability function
Probability of landing in next state 5" and receiving reward r after taking action a in state &.
Defines the environment's dynamics.

s wla|s)-Policy
Probability of taking action a when in state 5.
Determines the agent's behavior strategy.

» £ [0,1) - Discount factor
Controls importance of future rewards.

s ~ = (: only immediate rewards matter.
s 5 — 1:long-term rewards valued more,

s (7= Ef_” *:r""f:‘.f ki1 — Return

Total discounted reward starting at time £,

— Measures long-term gain of the current pnliq.-r\]f

s v-(s) = E; |G | S = 8] - State-value function
Expected return if the agent starts in state & and follows paolicy .

— Answers: "How good is it fo be in state s7°

s g.ls,a) = E. |G | 5 = s, 4; = a| - Action-value function
Expected return if the agent takes action a in state s and then follows policy «.
— Answers: "How good is it fo take action a in state 57"

Prepared by S S Roy (Oct 26", 2025)

Bellman Equations

Bellman Expectation Equation

‘ ve(s) = Y m(a | 8) Y pls'yr | 5,0)fr + que(s) ‘

a &r

o Defines how the value of a state equals the expected immediate reward plus the discounted value of the
next state.
* Expresses recursive dependency between state values.

Bellman Optimality Equations
| v.(s) = max " plsr | 5,0)/r + 70, (s) |
‘ q,(s,0) = Ep(sﬂr | 8,a)[r + 7 maxq,(s',a'), |
i
&r

» Describe the optimal value functions, assuming the best possible actions are always chosen.

* v, and g. define the foundation of optimal control in reinforcement leamning.

Prepared by S S Roy (Oct 26", 2025)

3. Dynamic Programming(DP) in RL

Dynamic Programming (DP) in Reinforcement Learning is a model-based approach used when the
environment's transition dynamics p(s’, 7 | s, a) are fully known. It provides a systematic way to compute
the optimal policy by iteratively evaluating and improving policies. The idea is to start with any policy ,
compute its value function (policy evaluation), then generate a new improved policy (policy improvement)
that acts greedily with respect to those values. Repeating this process until convergence yields the optimal
policy m* and optimal value function v*(s). This iterative combination of evaluation and improvement is

called policy iteration, while a faster variant that combines both in a single step is known as value iteration.

The policy evaluation equation

vea(s) = Y w(a| 8) Y pls',r | 5,a)lr + you(s)]

computes the expected value of each state under the current policy. The policy improvement step

m'(s) = arg max Z p(s',r | s,a)[r + yv:(s)]

s

creates a new greedy policy that maximizes expected returns. Value iteration merges both steps, using

vee1(s) = max 3 p(s', 7 | 5,0)[r + yor(s))
[/} -
s.r

to directly approach the optimal value function without separately evaluating a full policy. DP assumes a
perfect model and a finite state—action space, making it computationally expensive for large problems but
foundational for understanding later RL methods such as Monte Carlo and Temporal-Difference (TD)

learning, which approximate these principles from experience rather than full medels.

Prepared by S S Roy (Oct 26", 2025)

