@S S Roy,9th Sept,2025

Agglomerative (Single-link / Min-distance) Hierarchical

Problem statement (dataset chosen)

We have 6 one-dimensional data points:
Data: 12, 17, 18, 24, 50, 52

Use agglomerative hierarchical clustering with single-link (min distance). At each

iteration:

1/8

2/8

1. Find the two clusters with the smallest inter-cluster distance (single-link =
minimum pairwise distance between points of the clusters).

2. Merge them.

3. Update the proximity matrix using single-link (min of pairwise distances).

Show the proximity matrix for each iteration and the final dendrogram.

Key reminder (single-link update)

If cluster A and cluster B are merged into cluster AuB, the distance between cluster

AUB and any other cluster C under single-link is:

d_single(AUB, C) = min(d(a, c)forain A, cin C) =min(d(A, C), d(B, C))

(So you update a cluster-to-cluster distance by taking the minimum of the prior

distances.)

1) Initial proximity (pairwise absolute differences)

We list the points in ascending order and compute |xi — Xxj|.

makefile

Points: 12 17 18 24 50 52
Index: P1 P2 P3 P4 P5 P6

Initial symmetric proximity matrix (rows = clusters, columns = clusters). Diagonal = 0.

java
Initial proximity matrix (absolute differences)

12 17 18 24 50 52
12 0 5 6 12 38 40
177 5 0 1 7 33 35
18 6 1 0 6 32 34
24 12 7 6 0 26 28

50 38 33 32 26 0 2
52 40 35 34 28 2 O

Check a few entries (digit-by-digit):

e |17 - 18] = 1 (smallest).
e |50 - 52| = 2.

e |12 - 24| = 12.

e |24 - 50| = 26.

2) Merge history and matrices — step by step

I will number iterations. At each step I show which clusters are merged and the

updated matrix (labels show current clusters).

Step 0 — start

Clusters: {123}, {17}, {18}, {24}, {50}, {52}

Matrix shown above.

Smallest distance = 1 between 17 and 18.So we merge {17} & {18}.

Step 1 — merge {17} and {18}

Merged clusters: (17,18) at distance 1.

New cluster set (sorted for display):
{12}, { (17,18) }, {24}, {50}, {52}

Proximity matrix after the merge (single-link):
markdown
Step 1: clusters =[12, (17,18), 24, 50, 52]

12 (17,18) 24 50 52
12 0 5 12 38 40
(17,185 0 6 32 34
24 12 6 0 26 28

3/8

50 38 32 26 0 2
52 40 34 28 2 O

How entries were computed (examples):

e d((17,18), 12) = min(|17-12|, |18-12|) = min(5,6) = 5.

e d((17,18), 24) = min(|17-24|, |18-24|) = min(7,6) = 6.

e distances to 50 and 52 use the minimum of pairwise differences (32 and 34

respectively).

Next smallest distance = 2 between 50 and 52 .Merge {50} & {52}.

Step 2 — merge {50} and {52}

Merged clusters: (50,52) atdistance 2.
New clusters: {12}, {(17,18)}, {24}, {(50,52)}
Proximity matrix:

markdown

Step 2: clusters =[12, (17,18), 24, (50,52)]

12 (17,18) 24 (50,52)
12 0 5 12 38
(17,185 0 6 32
24 12 6 0 26
(50,5238 32 26 O

Notes:

e d((50,52), 24) = min(|56-24],|52-24|) = min(26,28) = 26.

e d((50,52), (17,18)) = min(33,32,35,34) = 32 (minamong 50-17, 50-18,
52-17, 52-18).

Next smallest distance = 5 between 12 and (17,18) . Merge {12} with {17,18} .

Step 3 — merge {12} and (17,18)

Merged clusters: (12,17,18) at distance 5.

4/8

New clusters: { (12,17,18) }, {24}, { (50,52) }
Proximity matrix:

markdown

Step 3: clusters = [(12,17,18), 24, (50,52)]

(12,17,18) 24 (50,52)
(12,17,18) O 6 32
24 6 0 26
(50,52) 32 26 O

Check computation:

e d((12,17,18), 24) = min(|12-24|,|17-24|,|18-24|) = min(12,7,6) = 6.

e d((12,17,18), (50,52)) = min(38,40,33,35,32,34) = 32 —> the minimum is
|18 - 50| = 32,

Next smallest distance = 6 between (12,17,18) and 24 . Merge them next.

Step 4 — merge (12,17,18) and 24

Merged clusters: (12,17,18,24) atdistance 6.
Now clusters: { (12,17,18,24) }, { (50,52) }
Proximity matrix:

markdown

Step 4: clusters =[(12,17,18,24), (50,52)]

(12,17,18,24) (50,52)
(12,17,18,24) 0 26
(50,52) 26 0

Check:

e d((12,17,18,24), (50,52)) = min(distances of any element in left

cluster to 50 or 52).

5/8

6/8

The minimum is |24 - 50| = 26 (smaller than all the other pairwise

differences).

Final merge merges these two clusters at distance 26.

Step 5 — final merge

Merge (12,17,18,24) with (50,52) atdistance 26 — final cluster

{12,17,18,24,50,52} .

3) Merge summary (compact)

Merge # Clusters merged Distance at merge New resulting cluster

1 {17} & {18} 1 (17,18)

2 {50} & {52} 2 (50,52)

3 {12} & (17,18) 5 (12,17,18)

4 (12,17,18) & 6 (12,17,18,24)
{24}

5 (12,17,18,24) & 26 (12,17,18,24,50,52)
(50,52)

4) Dendrogram (parentheses and interpretation)

Parenthetical (Newick-like) representation:

SCSS
(((12,(17,18)),24),(50,52))

If we annotate the heights (merge distances):
graphql

((12,(17,18) @1) @5, 24) @6, (50,52) @2) @26

7/8

Interpreting the dendrogram left — right:

17 and 18 join very close (height = 1).

50 and 52 join very close (height = 2) in their own cluster.

12 joins the 17-18 pair at distance 5.

That group joins with 24 at distance 6.

Finally the big left cluster meets the (50,52) cluster at distance 26.

(If you draw this exactly like your screenshots, the y-axis (height) would show jumps
at1, 2,5, 6,and 26.)

ghts & best-practice notes

Single-link (min) tends to produce chains: points can be pulled into a cluster if
they are close to any member. That is visible here: 12 merges into the small
cluster {17,18} even though 12 is notthat close to 18 (it's closer to 17). This
chaining is a property to keep in mind.
Choosing number of clusters: cut the dendrogram at a horizontal line. For
example:

e cutat height <6 — clusters would be {12,17,18} and {24} and {50, 52}

(3 clusters)
e cut at height between 6 and 26 — clusters {12,17,18,24} and {50,52} (2
clusters)

e cutbelow 2 — clusters {17,18}, {50,52}, 12, 24 (4 clusters)
Other linkages: complete-link uses max distances (compact clusters), average
uses mean pairwise distance (smoother), Ward minimizes increase in total
within-cluster variance (balanced clusters). If you want compact spherical
clusters, complete or Ward may be more appropriate.
Complexity: the naive agglomerative implementation recomputes matrices each
merge — O(n3). With appropriate data structures (priority queues, nearest-
neighbor tracking) you can achieve roughly O(n?) time and O(n?) memory for
many linkage methods.
Numeric correctness: all distances above are absolute differences computed

exactly (checked step-by-step).

6) Appendix — quick checks & example calculations

e d(17,18) = |17-18| = 1 — first merge.

After merging {17,183}, d((17,18), 24) = min(|17-24]|,|18-24|) = min(7,6)

= 6.

d(50,52) = |50-52| = 2 — second merge.

d((12,17,18), 24) = min(|12-24|, |17-24]|, |18-24|) = min(12,7,6) = 6.

d((12,17,18,24), (50,52)) = min(all pairwise differences) = min(...,

|24-50|=26, ...) = 26.

@S S Roy,9th Sept,2025

8/8

