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Hierarchical C|W

1. What hierarchical clustering is (precise conceptual statement)

Hierarchical clustering produces a nested family of partitions {C®}; of a dataset

X ={Xq, ..., Xp} indexed by a scale parameter (height) t. Equivalently it constructs a
rooted tree (dendrogram) whose leaves are the individual points and internal nodes
represent successive merges (agglomerative) or splits (divisive). The dendrogram
induces a cophenetic (ultrametric) distance C(/, ): the height at which leaves / and |
first share a common ancestor. This cophenetic distance is an ultrametric and

encodes the complete hierarchy.

2. Two canonical frameworks



® Agglomerative (bottom-up) — start with 71 singieton clusters, repeatedly merge
the “nearest” pair until one cluster remains.

e Divisive (top-down) — start with one cluster and recursively split (less common
in practice).

All agglomerative methods differ only in the linkage (how inter-cluster distance is
defined) and the base metric d(x;, X;).

3. Distances & preprocessing (critical choices)

e Metric choices: squared-Euclidean (#/ X —y // 2), Euclidean, Manhattan, cosine
distance 1 — cos(0), correlation distance 1 — p, Mahalanobis, Gower (mixed
data).

e Scaling: mandatory for heterogeneous features — standardize or use domain
weights. Ward's method assumes Euclidean geometry (uses variances).

e Categorical / mixed data: use Gower distance or appropriate dissimilarity matrix
before linkage.

Practical rule: choose metric to reflect similarity semantics (cosine for text, Euclidean

for geometry/continuous features, Gower for mixed types).

4. Linkage criteria — definition & properties (mathematically
compact)

Let clusters A, B and a third cluster K. Denote pairwise distances d(:, *). The Lance-
Williams recurrence gives a unified update:

d(A U B, K) = aydA, K)+agd(B,K)+ B dA B)+y | dA K)—d(B,K) | .

Common parameterizations:

Method Update parameters Short description / property
Single as=ap =1, B=0y= d(A U B, K) = min(d(A, K), d(B, K)).
—15 Produces chaining; equivalent to MST-based
clustering.
Complete aQa=Qg = l, =0, y = d = max. Tends to compact clusters.



Method Update parameters Short description / property

Average (UPGMA) (\alpha_A=\tfrac{ A
Centroid (UPGMC) (\alpha_A=\tfrac{ A
Ward aand S dependon( A

Ward merge cost (useful closed form):
merging A and B increases total within-cluster sum of squares by
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where L4 is the centroid of A. Agglomerative Ward merges the pair with smallest A.

5. Important mathematical properties (short proofs / statements)

e Ultrametric from the dendrogram: The cophenetic distance C(/, f) is an

ultrametric: for any triple /, j, K,
c(i, /) < max{c(i, k), c(j, k)}.

Reason: in the tree, the earliest common ancestor of / and J sits at or below the
later of ancestors with K.

e Single linkage = Minimum Spanning Tree (MST): Building the MST (e.g.,
Kruskal) and cutting edges above threshold t yields exactly the connected
components produced by single linkage at height t. Sketch: Kruskal's algorithm
adds smallest edges that connect components — identical to single-link merges.

e Monotonicity (no inversions): A linkage is monotone if the sequence of merge
distances is nondecreasing. Single, complete, average and Ward are monotone.
Centroid and some median rules can be non-monotone (inversions) — their
cophenetic distances may decrease after a merge, complicating dendrogram

interpretation.

6. Algorithmic complexity & scalable strategies

e Naive implementation: maintain full n X n distance matrix and search minima

each step — worst-case O(n?) time and O(n?) memory.



ETTicient updaates (Lance-VWilllams): aliow U(/1~) time with U7~ ) memory It
implemented carefully (nearest-neighbor search + update).

Specialized algorithms: SLINK (Sibson) computes single linkage in O(n?) time
and O(n) memory. CLINK does the same for complete linkage. The nearest-
neighbor chain algorithm gives O(n?) for many linkages.

Practical note: hierarchical clustering is viable up to a few 10Ks of points with
optimized C/Fortran libraries (SciPy, fast implementations). For very large data
use hybrid strategies (e.g., BIRCH, sample + refine, or graph-based/DBSCAN or

approximate clustering).

7. Interpreting and using the dendrogram

Cutting strategies: pick level t (height) — flat partition; or cut to produce k
clusters.

Statistical criteria: silhouette score, cophenetic correlation (below), gap statistic,
inconsistency coefficients, stability via bootstrap.

Cophenetic correlation coefficient (quality of hierarchy):
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where dj; are original dissimilarities and Cj; are cophenetic distances. Values

near 1 indicate the dendrogram preserves the pairwise dissimilarities well.

8. Strengths, weaknesses & practitioner’s heuristics

Strengths:

* No need to pre-specify K (full hierarchy).

* Provides multi-scale view; interpretable dendrogram.

» Works with any dissimilarity matrix (flexible for non-Euclidean data).
Weaknesses / pitfalls:

* Sensitive to metric & scaling.

* Single linkage: chaining — joins via noisy points => poor compactness.
+ Centroid/median: can cause non-monotone merges (inversions).

« Computationally heavy for large n.



FAeuristics:

* For compact spherical clusters use Ward (Euclidean).

* For elongated clusters or when connectivity matters use single (but beware
chaining).

* For compromise use average linkage.

* Always standardize features if scales differ. Validate cluster choice with

silhouette or stability/resampling.

9. Practical pipeline (short)

P Wwbh =

Clean data; impute missing values.

Choose/compute dissimilarity d (Gower for mixed). Standardize/weight features.
Select linkage (Ward/average/complete/single) according to geometry.

Compute condensed distance matrix (store efficiently). Use optimized library
(SciPy/fast C implementation).

5. Inspect dendrogram; compute cophenetic correlation.

6. Choose cut (height or K) using silhouette / gap statistic / stability.

7. Validate clusters with domain checks.

10.

11.

Advanced notes (concise)

Constrained clustering: must-link / cannot-link constraints can be incorporated
in some agglomerative variants (modify allowable merges).

Bootstrap stability: repeatedly resample and recompute hierarchy; measure
cooccurrence of pairs to identify robust clusters.

Graph interpretations: single linkage connected components < thresholded
graph; spectral clustering is an alternative that uses eigenstructure of similarity
graph (useful when hierarchy is not desired).

Hybrid & large-scale: use sampling to build dendrogram on representative

points, then assign rest (fast but approximate).

Pocket mathematical references (formulas)
Al | B
: = Y g =g 2.
Ward merge cost: Ay g AT+ 1B ! Ua— U 7/

Lance-Williams general update: see 84.



e (opnhenetic correlation: see 3/ Tormula.
o Ultrametric inequality: c(/, j) < max(c(i, k), c(j, k)).

12. Recommended canonical readings (textbooks & focused
references)

(These are the classic/standard sources to study hierarchical clustering and

clustering theory.)

» The Elements of Statistical Learning — Hastie, Tibshirani & Friedman — (chapter on
clustering; Ward and linkage discussion).

e Pattern Recognition and Machine Learning — Christopher M. Bishop —
(probabilistic view; clustering methods).

o Algorithms for Clustering Data — Jain & Dubes — (classical algorithms and
properties).

e Data Mining: Concepts and Techniques — Han, Kamber & Pei — (practical
clustering methods).

e Modern Multivariate Statistical Techniques / Murtagh & Contreras — (detailed
hierarchical algorithms; SLINK/CLINK/Lance-Williams theory).

e Original algorithmic papers: Sibson (SLINK, 1973), Lance & Williams (update

formula).

e Use Ward + Euclidean for compact, spherical clusters.

e Use average/complete if you want to avoid chaining but still flexible shapes.

e Use single only when connectivity/chain structure matters (and be careful of
noise).

o If mixed data: compute Gower dissimilarities first.

e For large n: sample / use BIRCH / approximate algorithms.

e Check cophenetic correlation to judge dendrogram faithfulness.






