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Data Warehousing: Purpose and Strategic Value

Modern organizations operate in environments where competition is intense, customer
expectations change rapidly, and decisions must be made based on evidence rather than
intuition. Data warehousing emerged to address this reality by providing a systematic way to
organize, integrate, and analyze large volumes of data accumulated across an enterprise.

At its core, a data warehouse is not merely a database. It is a decision-support infrastructure
that consolidates data from multiple operational systems and external sources, restructures it
for analysis, and preserves historical context. This enables managers, analysts, and executives
to identify trends, evaluate performance, and make informed strategic decisions. Over time,
many organizations have recognized that understanding customer behavior, operational
efficiency, and market dynamics through integrated data is a competitive necessity rather
than a luxury.

What a Data Warehouse Is—and What It Is Not

A data warehouse is maintained separately from operational databases. Operational systems
are designed to record day-to-day transactions—sales, payments, registrations, updates—
efficiently and accurately. A data warehouse, by contrast, is designed for analysis rather than
transaction processing.

A widely accepted definition describes a data warehouse as a collection of data that is:

e Subject-oriented: Data is organized around key business subjects such as customers,
products, sales, or suppliers. This orientation simplifies analysis by focusing on what
decision makers care about, rather than on operational processes.

e Integrated: Data from heterogeneous sources is brought together into a consistent
format. Differences in naming conventions, data types, units, and codes are resolved
through data cleaning and integration.

o Time-variant: The warehouse stores historical data, often spanning several years.
Each record is associated with a time dimension, enabling trend analysis and
longitudinal studies.

« Nonvolatile: Once data is loaded, it is not updated or deleted in the same way as
operational data. The warehouse is stable, supporting read-intensive analytical queries
rather than frequent insert, update, or delete operations.

Together, these characteristics distinguish a data warehouse from traditional databases and
make it suitable for decision support.

How Organizations Use Data Warehouses
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Organizations rely on data warehouses to support a wide range of analytical and strategic
activities, including:

« Understanding customer behavior by analyzing buying patterns, preferences, timing,
and spending habits.

o Evaluating product performance across time periods and geographic regions to refine
pricing, production, and distribution strategies.

« Identifying inefficiencies or profit opportunities in operations.

e Supporting customer relationship management, asset utilization, cost control, and
environmental or regulatory analysis.

An additional and often underappreciated benefit is the role of data warehousing in
integrating heterogeneous databases. Instead of querying multiple autonomous systems on
demand—a process that is complex, slow, and resource-intensive—data from these systems
is integrated in advance. This results in faster queries, reduced interference with operational
workloads, and a unified semantic view of enterprise data.

Operational Systems Versus Analytical Systems

To fully appreciate the role of a data warehouse, it is useful to contrast operational database
systems with analytical systems.

Operational systems are designed for transaction processing. They support large numbers of
concurrent users, ensure data consistency through locking and logging, and focus on current,
highly detailed data. Their performance is measured in terms of transaction throughput and
availability.

Analytical systems, often referred to as online analytical processing systems, are designed for
exploration and analysis. They manage large volumes of historical data, support aggregation
and summarization, and allow users to view data at multiple levels of detail. Queries are
typically complex and read-intensive, and performance is measured by query response time
and flexibility.

Running analytical queries directly on operational systems would severely degrade
transactional performance and complicate concurrency control. For this reason, maintaining a
separate data warehouse remains the dominant architectural approach, even though modern
database systems increasingly blur the boundary between the two.

Multitier Architecture of a Data Warehouse

Data warehouses are commonly implemented using a multitier architecture that separates
data storage, analytical processing, and user interaction.
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At the foundation lies the warehouse database server, typically implemented using relational
database technology. Data is extracted from operational systems and external sources,
cleaned to remove errors and inconsistencies, transformed into a unified format, and loaded
into the warehouse. This layer also maintains metadata describing the structure, content, and
lineage of the data.

Above this sits the analytical server layer. This layer supports multidimensional analysis and
may be implemented using relational extensions or specialized multidimensional storage. It
translates analytical requests into efficient data access paths.

At the top are client-facing tools used by analysts and decision makers. These include query
and reporting tools, dashboards, visualization systems, and data mining or predictive
analytics tools.

Enterprise Warehouses, Data Marts, and Virtual
Warehouses

From an architectural perspective, data warehouses can be organized in several ways.

An enterprise warehouse integrates data across the entire organization. It provides a
comprehensive, consistent view of enterprise data and typically contains both detailed and
summarized information. While powerful, it is expensive and time-consuming to build.

A data mart is a focused subset of data designed for a specific department or business
function, such as marketing or finance. Data marts are faster to implement and less costly, but
if designed in isolation they can lead to integration challenges later.



A virtual warehouse consists of views defined over operational databases. It is easy to create
but places additional load on operational systems and offers limited performance for complex
queries.

In practice, many organizations adopt an incremental approach: defining a high-level
corporate data model early, building data marts in parallel, and gradually integrating them
into a cohesive enterprise warehouse.

Extraction, Transformation, and Loading

Populating a data warehouse requires a disciplined backend process commonly referred to as
extraction, transformation, and loading.

« Extraction collects data from diverse internal and external sources.

« Cleaning identifies and corrects errors, inconsistencies, and missing values.

e Transformation converts data into formats and structures suitable for analytical use.

« Loading inserts data into the warehouse, often after sorting, summarizing, and
indexing.

« Refresh propagates updates from source systems into the warehouse at scheduled
intervals.

The quality of these processes directly affects the reliability of analytical results.

The Role of Metadata

Metadata is often described as “data about data,” but in a data warehouse it plays a central
operational and analytical role. Metadata documents the structure of the warehouse, the
meaning of data elements, data lineage, transformation rules, aggregation logic, refresh
schedules, and access controls.

For analysts, metadata serves as a directory that explains what data exists and how it can be
used. For system designers, it provides the blueprint that connects operational data to
analytical representations. Because of its importance, metadata is stored persistently and
managed with the same care as the warehouse data itself.

Multidimensional Modeling and the Data Cube

Analytical processing in a data warehouse is based on a multidimensional view of data,
commonly conceptualized as a data cube.



2-D View of Sales Data for AllElectronics According to time and item

location = “Vancouver”

item (type)
home
time (quarter) entertainment computer phone security
Q1 6035 825 14 400
Q2 680 952 3 512
Q3 812 1023 30 501
04 917 038 38 580

Note: The sales are from branches located in the city of Vancouver. The measure displayed is dollars_sold
(in thousands).

3-D View of Sales Data for AllElectronics According to time, item, and location

location = “Chicago”™  location = “New York” location = “Toronto”  lecation = “Vancouver”

Item ftem Item ftem

home home home home
time ent. comp. phone sec.  ent. comp. phone sec.  ent comp. phone sec. ent comp. phone sec.

Q1 854 882 89 623 1087 968 38 872 BI8 746 43 91 605 815 14 400
Q2 043 890 64 608 1130 1024 4] 025 894 760 52 681 68D 952 31 512
Q3 1032 924 59 780 1034 1048 45 1002 940 795 58 728 812 1023 30 501
Q4 1129 992 63 870 1142 1091 54 084 978 864 59 TB4 927 1038 38 58D

Note: The measure displayed is dollars_sold (in thousands).
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A 3-I data cube representation of the data in Table 4.3, according to time, ifemn, and locarion.
The measure displayed is dollars_sold (in thousands).
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A 4-D data cube representation of sales data, according to rime, item, locarion, and supplier.
The measure displayed is dollars_sold (in thousands). For improved readability, only some of
the cube vahues are shown.

In this model, dimensions represent perspectives such as time, location, product, or
customer. Facts are numeric measures, such as sales amount or units sold, that quantify
business activity. A fact table stores these measures along with keys referencing the
associated dimension tables.

Although the term “cube” suggests three dimensions, real-world data cubes are n-
dimensional. They support analysis at multiple levels of aggregation. The most detailed
representation is known as the base cuboid, while the most summarized representation,
aggregating across all dimensions, is called the apex cuboid. Together, all possible
aggregations form a lattice of cuboids that constitutes the full data cube.

Schema Designs for Multidimensional Data

To implement multidimensional models in practice, several schema designs are commonly
used.
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Star schema of sales data warehouse.

A star schema consists of a central fact table connected to denormalized dimension tables. It
is simple, intuitive, and efficient for querying, making it the most widely used design. Star
schema: The most common modeling paradigm is the star schema, in which the data
warehouse contains (1) a large central table (fact table) containing the bulk of the data, with
no redundancy, and (2) a set of smaller attendant tables (dimension tables), one for each

dimension. The schema graph resembles a starburst, with the dimension tables displayed in a
radial pattern around the central fact table.
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Snowflake schema of a sales data warehouse.



A snowflake schema normalizes some dimension tables into multiple related tables. This
reduces redundancy but increases query complexity due to additional joins.

time sales item \ shipping shipper
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Fact constellation schema of a sales and shipping data warehouse.

A fact constellation schema supports multiple fact tables that share common dimensions.

This design is typical in enterprise warehouses that model multiple, related business
processes.

What is OLAP?

e OLAP (Online Analytical Processing) is a technology for fast, interactive analysis
of large volumes of multidimensional data.

« It supports analysis across dimensions such as time, location, product, customer,
etc.

e OLAP is designed for decision support, not routine transactions (unlike OLTP).

e Itenables complex queries, aggregations, trend analysis, and what-if analysis.

o Core OLAP operations include roll-up, drill-down, slice, dice, and pivot.
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Examples of typical OLAP operations on multidimensional data.

Concept Hierarchies in OLAP

e Ina multidimensional model, each dimension has multiple levels of abstraction.
e These levels are organized as concept hierarchies.
o Concept hierarchies allow users to:
o View data at different granularities
o Summarize or detail data dynamically
« Example hierarchies:
o Time: day — month — quarter — year
o Location: street — city — state/province — country
o Item: item — item type — category

Key Benefit: Flexible, user-friendly interactive data analysis from multiple perspectives.

Example OLAP Data Cube

e Dimensions:
o Location (city level)
o Time (quarter level)
o Item (item type level)
e Measure:



o Sales amount (dollars sold, in thousands)
e Sample cities analyzed:

o Chicago, New York, Toronto, Vancouver
« This cube is referred to as the central cube.

Typical OLAP Operations

Roll-up (Drill-up)
Purpose: Aggregate data to a higher level.

e Performed by:

o Climbing up a concept hierarchy, or

o Reducing dimensions
o Example (Hierarchy-based):

o Location: city — country

o Result: Sales grouped by country, not city
o Example (Dimension reduction):

o Removing time dimension

o Result: Total sales by location only

Drill-down
Purpose: Move from summary data to detailed data.

e Reverse of roll-up
e Performed by:
o Descending a concept hierarchy, or
o Adding new dimensions
o Example (Hierarchy-based):
o Time: quarter — month
o Result: Monthly sales instead of quarterly
o Example (Dimension addition):
o Adding customer group dimension for finer analysis

Slice
Purpose: Select data on one dimension.

o Fixes asingle dimension value
o Result: A subcube
o Example:

o Time=Q1



o Result: Sales data only for Quarter 1

Dice
Purpose: Select data on multiple dimensions.

o Applies multiple filtering conditions
e Result: A smaller subcube
o Example:
o Location = Toronto or Vancouver
o Time=Q1lorQ2
o Item = Home entertainment or Computer

Pivot (Rotate)
Purpose: Change data orientation for better visualization.

« Rotates axes of the cube
o Does not change data, only presentation
o Examples:
o Swap item and location axes
o Convert a 3D cube into multiple 2D views

Other OLAP Operations

e Drill-across:

o Queries across multiple fact tables
e Drill-through:

o Accesses underlying relational tables using SQL
e Advanced analytics:
Top-N / Bottom-N ranking
Moving averages
Growth rates
Currency conversion
Depreciation, interest, IRR
Statistical functions

O O O O O O

Analytical Power of OLAP

e Built-in calculation engine for:
o Ratios, variance, derived measures



e Supports:

o Aggregations at all granularities

o Analysis across all dimension intersections
« Enables:

o Forecasting

o Trend analysis

o Statistical modeling

Conclusion: OLAP engines are powerful tools for business intelligence and strategic
analysis.

OLAP Systems vs Statistical Databases (SDBs)

Similarities:
o Multidimensional data models
e Concept hierarchies
e Measures linked with dimensions
e Roll-up and drill-down operations

Difference:

e OLAP evolved for business decision support
o SDBs focus on statistical applications
o Differences largely arise from terminology and application domains

Starnet Query Model (Multidimensional Querying)

What is a Starnet Model?

e A visual query model for OLAP
e Consists of:
o A central point (fact table)
o Radial lines (dimensions)
o Each radial line represents a concept hierarchy
e Each level in a hierarchy is called a footprint

Example: AllElectronics Starnet

« Dimensions (Radial Lines):
o Location
o Customer
o ltem



o Time
o Time footprints:
o Day — Month — Quarter — Year
o Location hierarchy:
o Street — City — State/Province — Country

Role of Concept Hierarchies in Starnet

« Enable:
o Generalization (day — year)
o Specialization (country — city)
e Support OLAP operations:
o Roll-up
o Drill-down
o Allow users to analyze data at any desired granularity

OLAP combines multidimensional modeling, concept hierarchies, and powerful
operations to enable fast, flexible, and interactive decision-oriented data analysis.

Part-wise Explanation of the above figure(Fig-OLAP OPERATIONS)
Central Cube (Middle of the Figure)

o Referenced part: The large cube located at the center
Meaning: This is the central OLAP data cube for AllElectronics sales.
Dimensions shown:
= Location [J Chicago, New York, Toronto, Vancouver
= Time [71Q1, Q2, Q3, Q4
= Item [ computer, phone, home entertainment, security
o Measure: Sales amount (dollars sold).

Roll-up Operation (Upper-Right Cube)

Referenced part: Cube labeled /roll-up (from cities to country)//

Meaning: Sales data are aggregated from city level to country level (USA).
Concept hierarchy used: city [ country

Effect: Fewer cells, higher-level summarized view.

o O O O

Drill-down Operation (Right-Side Tall Cube)

Referenced part: Cube labeled /drill-down (from quarters to months)//
Meaning: Time dimension is expanded from quarters to individual months.
Concept hierarchy used: quarter [] month

Effect: More detailed, fine-grained sales information.

O O O O



Slice and Dice Operations (Top-Left and Middle-Left Cubes)

o Slice
= Referenced part: Top-left cube labeled /slice (time = Q1)//
= Meaning: Only Q1 data is selected, reducing the cube to a subcube.

= Referenced part: Middle-left cube with multiple selection conditions
= Meaning: Filters applied on location, time, and item simultaneously
to create a smaller subcube.

Pivot (Bottom-Left Table)

Referenced part: Bottom-left 2-D table labeled /pivot//
Meaning: Axes are rotated (item vs location) to change the visual
orientation.

o Effect: Data values remain unchanged, but the viewpoint is altered for better
analysis.

>>Each region of above figure demonstrates a specific OLAP operation--central cube (base
data), upper-right (roll-up), right-side (drill-down), left-side (slice/dice), and bottom-left
(pivot)--showing how multidimensional data can be interactively analyzed.

Querying Multidimensional Databases with the Starnet
Model

Querying multidimensional data is most effective when users can naturally navigate between
different levels of abstraction. The starnet query model provides an intuitive framework for
this navigation.

In the starnet model, queries are visualized as radial lines extending from a central point,
where each radial line represents a dimension of analysis such as time, location, item, or
customer. Along each line are footprints, which correspond to abstraction levels within a
concept hierarchy. These footprints define the granularities available for analysis.
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Fig- A Starnet model of the business queries.

For example, the time dimension may include footprints such as day, month, quarter, and
year. The location dimension may progress from street to city, province or state, and country.
By moving upward or downward along these radial lines, users perform roll-up and drill-
down operations. Rolling up replaces detailed data with more generalized summaries, while
drilling down reveals finer detail.

The starnet model is especially useful because it mirrors how analysts think: they begin with
a high-level overview and then selectively refine their focus, or they start from detail and
gradually abstract patterns.

Why a Business-Driven Design Perspective Matters

A data warehouse is valuable only if it aligns with business objectives. Designing one
therefore requires a business analysis framework that balances strategic vision with
technical feasibility.

Organizations benefit from data warehouses in several fundamental ways. They gain
competitive advantage by measuring performance accurately, improve productivity by
reducing the time required to gather and reconcile information, strengthen customer
relationship management through consistent enterprise-wide views, and reduce costs by
identifying long-term trends, anomalies, and inefficiencies.

Designing such a system requires viewing it from multiple complementary perspectives:

e A business perspective, which identifies what information is needed now and in the
future.

e A data source perspective, which reveals what data is currently captured by
operational systems and in what form.



« A warehouse perspective, which defines how facts, dimensions, and historical
context are stored.

e A Dbusiness query perspective, which reflects how end users expect to explore and
analyze the data.

These perspectives together ensure that the warehouse serves real decision-making needs
rather than becoming a purely technical artifact.

Skills Required to Build and Use a Data Warehouse

Data warehousing is inherently interdisciplinary. Successful implementation requires:

« Business understanding, to interpret data meaningfully and translate requirements
into analytical questions.

« Technical expertise, to design schemas, build extraction and refresh pipelines, and
ensure scalability.

« Analytical skills, to detect patterns, trends, anomalies, and shifts in behavior.

e Program management capability, to coordinate tools, vendors, timelines, and
stakeholders.

Without this combination, even technically sound warehouses may fail to deliver value.

Approaches to Data Warehouse Design

Data warehouses can be built using different development strategies.

A top-down approach begins with enterprise-wide planning and modeling. It is well suited
when business processes are stable and well understood, but it is expensive and slow.

A bottom-up approach starts with smaller prototypes or data marts. It delivers faster results
and lower initial cost but can create integration challenges if pursued in isolation.

A combined approach leverages both: a high-level corporate data model provides
consistency, while incremental data marts deliver early benefits and adaptability.

From a development methodology standpoint, iterative and evolutionary methods are often

preferred. Rapid cycles allow early validation, continuous refinement, and timely adaptation
to changing requirements.

Core Steps in Data Warehouse Design

At a practical level, warehouse design typically follows a sequence of decisions:



Select the business process to be modeled, such as sales, inventory, or shipments.
Define the grain, which determines the level of detail stored in the fact table.
Identify dimensions, such as time, product, customer, or location.

Choose measures, which are the numeric quantities to be analyzed, such as revenue
or units sold.

el N =

Clear scoping is critical. Initial implementations should have specific, measurable goals and
well-defined constraints on time, budget, and organizational coverage.

How Data Warehouses Are Used Over Time

The use of a data warehouse typically evolves through stages.

Initially, it supports reporting and predefined queries. Over time, users begin to explore
summarized and detailed data interactively, using charts and dashboards. Later, the
warehouse becomes a strategic tool for multidimensional analysis, enabling slice-and-dice,
pivoting, and trend analysis. Ultimately, it serves as a foundation for knowledge discovery,
where data mining techniques are applied to uncover deeper insights.

From a functional standpoint, warehouse usage falls into three categories:
« Information processing, focused on querying, reporting, and basic statistics.
o Analytical processing, focused on OLAP operations across multiple dimensions.

« Data mining, focused on discovering hidden patterns, relationships, and predictive
models.

OLAP and Data Mining: Complementary Roles
OLAP and data mining are closely related but fundamentally different in purpose.

OLAP emphasizes user-directed exploration, summarization, and comparison. It helps
analysts understand what has happened and how measures vary across dimensions.

Data mining emphasizes automated discovery. It identifies associations, classifications,
clusters, and predictive relationships that are not obvious from simple aggregation.

While OLAP simplifies analysis and prepares data at multiple abstraction levels, data mining

goes further by revealing implicit knowledge. When combined, they form a powerful
analytical environment in which users can interactively guide deeper discovery.

Multidimensional Data Mining



Integrating OLAP with data mining leads to multidimensional data mining, sometimes
called exploratory or online analytical mining. This integration is particularly powerful
because data warehouses already contain clean, integrated, and historical data.

Users can navigate data cubes, select relevant subsets, adjust abstraction levels, and
dynamically invoke different mining functions. Visualization tools further enhance
understanding by presenting results in intuitive forms.

This integration supports a human-centered approach, where analysts interact with the system
rather than relying solely on fully automated discovery.

Efficient Implementation of Data Warehouses

Because data warehouses store massive volumes of data, performance is a central concern.
Analytical queries are expected to return results in seconds, even when operating over years
of historical data.

Achieving this requires efficient data cube computation, indexing, and query processing
strategies.

Data Cubes, Group-By Operations, and Dimensional
Explosion

A data cube can be viewed as a lattice of cuboids, where each cuboid represents a group-by
over a specific subset of dimensions.
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For a cube with n dimensions, there are potentially 2» cuboids. When dimensions have
multiple hierarchy levels, the number of possible cuboids grows even faster. This rapid
growth is known as the curse of dimensionality.

Precomputing all cuboids is usually impractical due to storage and maintenance costs.

Materialization Strategies for Data Cubes

There are three basic strategies for cube materialization:

« No materialization, where all aggregates are computed on demand.
e Full materialization, where all cuboids are precomputed.
« Partial materialization, where only selected cuboids or subsets of cells are stored.

Partial materialization offers a balance between storage cost and query performance.
Common techniques include storing frequently accessed cuboids, iceberg cubes that retain

only significant aggregates, and shell cubes that limit materialization to a subset of
dimensions.

Indexing OLAP Data for Performance

Indexing is critical for fast query execution in data warehouses.



Bitmap Indexing

Bitmap indexing represents attribute values using bit vectors, making it highly efficient for
low-cardinality dimensions.

Bitmap indexing. In the AllElectronics data warehouse, suppose the dimension item at
the top level has four values (representing item types): “home entertainment,” “com-
puter,” “phone,” and “security.” Each value {e.g.. “romputer”) is represented by a bit vector
in the ftem bitmap index table. Suppose that the cube is stored as a relation table with
100,000 rows. Because the domain of rtem consists of four valnes, the bitmap index table
requires four bit vectors (or lists), each with 100,000 bits. Figure 4.15 shows a base {data)
table containing the dimensions item and city, and its mapping to bitmap index tables

for each of the dimensions. [ ]
Base table item bitmap index table cify bitmap index table
RID} | ilem | city RID | H C P 5 RID v T
Rl H v Rl 1 a o a R1 1 o
R2 C v B2 1] 1 o a R2 1 o
R3 P v R3 L1} a 1 o R3 1 o
R4 5 v R4 LI} a o 1 R4 1 o
RS H T R3 1 a o a RS 1] 1
R& C T R& LI} 1 o a Ré& 1] 1
R7 P T RT 1] a 1 o R7 i} 1
RE 5 T RE L1} a 0 1 R& 1] 1

Nete: H for “home entertamment,” C for “computer.” P for “phone,” 5 for “security,”
W for “Vancouwver.” T for “Toronta.”

Fig(1.5)- Indexing OLAP data using bitmap indices.

Logical operations such as AND and OR can be applied directly to bitmaps, drastically
reducing 1/0 and computation time.

Below Figs-(4.6 &4.7)



Join indexing. In Example 3.4, we defined a star schema for AllEectronics of the form
“ sales_star [time, iter, branch, location]: dollars_sold = sum {sales_in_dollars)” An exam-
ple of a join index relationship between the sales fact table and the location and item
dimension tables is shown in Figure 4.16. For example, the “Main Street™ value in the
lscation dimension table joins with tuples T57, T238, and T884 of the sales fact table.
Similarly, the “Sony-TV™ value in the itermn dimension table joins with taples T57 and
T459 of the sales fact table. The corresponding join index tables are shown in Figure 4.17.

siales
location ifem
T
Main Street ‘-‘MH“‘ Soay-TY
T238
T450
TR

Linkapes between a sales fact table and locarion and iterm dimension tables.

Join index table for Join index table for
Tocation/sales itemisales
location sales_key ifem sales_key
Main Stret | TS7 Sony-TV 57
Miain Street T8 Sony-TV T459
Miain Sirest TEE4 ... ..

Joan index table linking
location and dem to sales

Incation ilem sales_key

.'-{:u'n Street S.un:--'[‘-" .]'5.?

Join index tables based on the linkages between the sales fact table and the locarion and item
dimension tables shown in Figure 4.16.

Join Indexing

Join indexing captures relationships between fact tables and dimension tables. It records
which fact table rows correspond to specific dimension values, avoiding costly joins during
query execution.

Bitmap and join indexing can also be combined to form bitmapped join indices, further
improving performance.

Processing OLAP Queries Efficiently

Efficient query processing involves selecting the most appropriate materialized cuboid,
transforming query operations into cube operations, and exploiting available indices.

The system evaluates candidate cuboids based on granularity, selection predicates, and
estimated cost, choosing the one that minimizes processing time.



OLAP Server Architectures

OLAP servers differ in how they store and manage data:

« Relational OLAP systems store data in relational tables and rely on SQL extensions
and middleware for multidimensional processing.

o Multidimensional OLAP systems use array-based storage optimized for fast access
to precomputed aggregates.

o Hybrid OLAP systems combine both approaches, storing detailed data relationally
and aggregates multidimensionally.

Each architecture reflects a trade-off between scalability, performance, and storage
efficiency.

Data Generalization and Concept Description

Data generalization summarizes data by replacing low-level values with higher-level
concepts or by reducing dimensionality. This supports concise descriptions of large data sets
and enables users to focus on general behavior rather than individual records.

Concept description is a form of data mining that produces characterizations and
comparisons of data collections. It goes beyond enumeration to generate meaningful
summaries.

Attribute-Oriented Induction

Attribute-oriented induction is a query-driven approach to concept description. It generalizes
task-relevant data by examining attribute distinctness and applying either attribute removal
or attribute generalization.

Attributes with too many distinct values and no meaningful generalization are removed.
Attributes with defined hierarchies are generalized upward. Identical generalized tuples are
merged, and aggregate measures such as counts or sums are accumulated.

Generalization is controlled using thresholds to avoid overgeneralization or
undergeneralization. Users can adjust these thresholds dynamically, effectively performing
roll-up and drill-down operations during mining.

The result is a compact, interpretable representation of the data that supports both descriptive
analysis and deeper discovery.



Therefore,from starnet-based querying to multidimensional mining and attribute-oriented
induction, modern data warehousing provides a rich analytical ecosystem. Its strength lies not
only in storing large volumes of data, but in enabling users to navigate, summarize,
generalize, and discover knowledge interactively. When designed with business objectives in
mind and implemented with efficient architectures, data warehouses form a critical
foundation for advanced analytics and informed decision making.

OLAP Server Architectures: ROLAP, MOLAP, and
HOLAP

OLAP servers present multidimensional views of data to users, abstracting away physical
storage details. Internally, however, their architectures differ in how data is stored,
aggregated, and accessed.

ROLAP SERVER

Front End

ROLAP
Analytical
Processing
logic
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Server Front end tool

ROLAP data
Processing
logic

Front end tool

ROLAP Architecture

MOLAP
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Uses relational or extended-relational DBMS.

Cube Structure
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Values

(Relational Data Warehose)




Stores data in fact tables and summary fact tables.

OLAP operations are mapped to SQL group-by queries.

Supports base fact tables (detailed data) and summary fact tables (aggregated data,
using a11 for subtotals).

Highly scalable, suitable for very large datasets.

Slower aggregation compared to MOLAP.

Common in enterprise-scale systems.

MOLAP (Multidimensional OLAP)

Uses array-based multidimensional storage.

Stores data directly in data cube structures.

Provides very fast query performance due to precomputed aggregates.

Suffers from storage inefficiency for sparse data.

Uses compression and two-level storage (dense subcubes as arrays, sparse subcubes
compressed).

HOLAP (Hybrid OLAP)

Combines ROLAP scalability with MOLAP speed.

Detailed data stored relationally; aggregates stored multidimensionally.
Balances performance and storage efficiency.

Common in commercial systems.

Specialized SQL Servers

Optimized relational engines for OLAP-style queries.
Support star/snowflake schemas in read-only analytical environments.

Data Storage in ROLAP vs MOLAP

ROLAP: Data stored in relational tables; summaries represented by generalized
attribute values (e.g., day = all).

MOLAP: Data stored as multidimensional arrays.

Warehouses follow client—server architecture; relational stores reside at the server,
multidimensional stores may reside at server or client.

Data Generalization and Concept Description

Data Generalization

Summarizes data by:
o Replacing low-level values with higher-level concepts.
o Reducing dimensionality.



« Enables analysis at multiple abstraction levels.

Concept Description

e A form of descriptive data mining.
e Produces:
o Characterization: summarizes one target class.
o Comparison (Discrimination): contrasts a target class with others.

Limitations of Pure OLAP-Based Generalization

e Restricted mainly to numeric measures and simple dimensions.
e Weak support for complex data types (text, spatial, multimedia).
o Fully user-driven, requiring many manual OLAP operations.

Attribute-Oriented Induction (AOI)

AOI is a query-driven, online generalization technique that complements OLAP.
Core Ideas

o Collect task-relevant data via query.
e Generalize data using:
o Attribute removal: remove attributes with many distinct values and no useful
hierarchy.
o Attribute generalization: climb concept hierarchies.
« Merge identical generalized tuples and accumulate:

o count, sum, avg.

Generalization Control

« Attribute threshold control: limits distinct values per attribute.
¢ Relation threshold control: limits number of generalized tuples.
« Prevents overgeneralization and undergeneralization.

Key Properties

e Works on complex data types.

e No need for precomputed cubes.

e Supports automated attribute relevance filtering.

o Limited drill-down capability beyond generalized level.



Attribute-Oriented Induction for Class Comparison

o Compares a target class with contrasting class(es).

o Uses synchronous generalization so all classes are compared at the same abstraction
level.

e Produces quantitative contrasts (e.g., count?).

e Results are presented as tables, charts, or rules.

Points to remember:

ROLAP: scalable, SQL-based, slower aggregation.

MOLAP: fast, cube-based, storage-heavy.

HOLAP: combines strengths of both.

OLAP excels at interactive summarization.

Attribute-oriented induction enables automated, flexible, online generalization.
Best practice: integrate OLAP and AOI for balanced performance, flexibility, and
depth of analysis.

Dimensions and Concept Hierarchies

Dimensions often include hierarchical relationships that allow data to be analyzed at varying
levels of abstraction. For example, locations may roll up from city to state to country, and
time may roll up from day to month to year.

Hierarchies can be total orders, where each level maps neatly to a higher level, or partial
orders, where multiple aggregation paths exist. They may also be defined by grouping values
into ranges, such as price bands. These hierarchies enable flexible analysis through operations
that summarize or drill into data.

Measures and Their Computation

Measures in a data cube are computed using aggregation functions and can be classified
based on how they behave under aggregation.

o Distributive measures can be computed incrementally from subaggregates, such as
sum, count, minimum, and maximum.

o Algebraic measures are derived from a fixed number of distributive measures, such
as average or standard deviation.



« Holistic measures require access to the full data set or a large portion of it, such as
median or mode, and are more difficult to compute efficiently.

Understanding these categories is essential for designing efficient aggregation strategies and
scalable analytical systems.

A data warehouse is both a repository and an architecture—a foundation for analytical
reasoning across an enterprise. By separating analytical workloads from operational systems,
integrating heterogeneous data sources, and organizing information in multidimensional
structures, data warehousing enables organizations to transform raw data into actionable
insight. As analytical needs grow and technologies evolve, the principles underlying data
warehousing continue to remain central to effective decision support.

15" January, 2026



