Backtracking

Solving N Queen problem by Backtracking

// C program : Backtracking solution for N-Queen problem   
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>

// Function to add the current solution to the answer list
void addSolution(int*** ans, int** board, int* solutionCount, int n) {
    (*solutionCount)++;
    *ans = (int**) realloc(*ans, (*solutionCount) * sizeof(int*));
    (*ans)[*solutionCount - 1] = (int*) malloc(n * n * sizeof(int));

    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            (*ans)[*solutionCount - 1][i * n + j] = board[i][j];
        }
    }
}

// Function to check if it is safe to place a queen at board[row][col]
bool isSafe(int row, int col, int** board, int n) {
    int x = row, y = col;

    // Check the left row
    while (y >= 0) {
        if (board[x][y] == 1)
            return false;
        y--;
    }

    // Check the upper left diagonal
    x = row, y = col;
    while (x >= 0 && y >= 0) {
        if (board[x][y] == 1)
            return false;
        x--;
        y--;
    }

    // Check the lower left diagonal
    x = row, y = col;
    while (x < n && y >= 0) {
        if (board[x][y] == 1)
            return false;
        x++;
        y--;
    }

    return true;
}

// Function to solve the N-Queens problem
void solve(int col, int*** ans, int** board, int* solutionCount, int n) {
    if (col == n) {
        addSolution(ans, board, solutionCount, n);
        return;
    }

    for (int row = 0; row < n; row++) {
        if (isSafe(row, col, board, n)) {
            // Place queen if it's safe
            board[row][col] = 1;
            solve(col + 1, ans, board, solutionCount, n);
            // Backtrack
            board[row][col] = 0;
        }
    }
}

// Function to print the solutions
void printSolutions(int** solutions, int solutionCount, int n) {
    for (int k = 0; k < solutionCount; k++) {
        printf("Solution %d:\n", k + 1);
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                printf("%c ", solutions[k][i * n + j] == 1 ? 'Q' : '.');
            }
            printf("\n");
        }
        printf("\n");
    }
}

// Main function to find all N-Queens solutions
int main() {
    int n;
    printf("Enter the value of N: ");
    scanf("%d", &n);

    // Allocate memory for the board
    int** board = (int**) malloc(n * sizeof(int*));
    for (int i = 0; i < n; i++) {
        board[i] = (int*) calloc(n, sizeof(int));
    }

    // Initialize solution list
    int** solutions = NULL;
    int solutionCount = 0;

    // Solve the problem
    solve(0, &solutions, board, &solutionCount, n);

    if (solutionCount == 0) {
        printf("No solutions exist for N = %d.\n", n);
    } else {
        printf("Total solutions for N = %d: %d\n\n", n, solutionCount);
        printSolutions(solutions, solutionCount, n);
    }

    // Free allocated memory
    for (int i = 0; i < n; i++) {
        free(board[i]);
    }
    free(board);

    for (int i = 0; i < solutionCount; i++) {
        free(solutions[i]);
    }
    free(solutions);

    return 0;
}
Output :
Enter the value of N: 4
Total solutions for N = 4: 2

Solution 1:
. . Q .
Q . . .
. . . Q
. Q . .

Solution 2:
. Q . .
. . . Q
Q . . .
. . Q .


Process returned 0 (0x0)   execution time : 2.579 s
Press any key to continue.

Solving Subset sum problem(or Sum of Subsets) by Backtracking

Solving graph colouring problem by back tracking

Rat in a Maze problem-solving by backtracking

The Rat in a Maze problem is a classic backtracking problem where a rat is placed in a maze and needs to find a path to reach the destination. The maze is represented by a grid of cells, where some cells are blocked, and others are open for movement. The goal is to determine all possible paths or at least one path from the source (top-left corner) to the destination (bottom-right corner).

//C++ backtracking solution for  Rat in a Maze problem.
#include <iostream> // Include the iostream library for input/output operations
#include <vector>   // Include the vector library for using dynamic arrays
using namespace std;
// Checks if a given cell (x, y) is valid for the rat to move to.
bool isSafe(int x, int y, int n, vector<vector<int>>& maze, vector<vector<int>>& sol) {
    return (x >= 0 && x < n && y >= 0 && y < n && maze[x][y] == 1 && sol[x][y] == 0);
}
// Recursive function to solve the maze
bool solveMaze(int x, int y, int n, vector<vector<int>>& maze, vector<vector<int>>& sol, vector<pair<int, int>>& path) {
    // Base case: Reached the destination
    if (x == n - 1 && y == n - 1) {
        sol[x][y] = 1; // Mark destination as visited
        path.push_back({x, y}); // Add destination coordinates to the path
        return true;
    }
    // Check if the current cell is valid
    if (isSafe(x, y, n, maze, sol)) {
        // Mark current cell as visited
        sol[x][y] = 1;
        path.push_back({x, y}); // Add current coordinates to the path

        // Explore all possible directions (right, down, left, up)
        if (solveMaze(x + 1, y, n, maze, sol, path) ||
            solveMaze(x, y + 1, n, maze, sol, path) ||
            solveMaze(x - 1, y, n, maze, sol, path) ||
            solveMaze(x, y - 1, n, maze, sol, path)) {
            return true; // If any direction leads to a solution, return true
        }
        // Backtrack (if no solution found in any direction)
        sol[x][y] = 0; // Unmark the cell
        path.pop_back(); // Remove coordinates from the path
        return false;
    }

    return false; // If the cell is not safe, return false
}
// Prints the coordinates of the solution path
void printSolution(vector<pair<int, int>>& path) {
    cout << "Solution Path Coordinates:" << endl;
    for (auto coord : path) {
        cout << "(" << coord.first << ", " << coord.second << ") ";
    }
    cout << endl;
}
int main() {
    int n;
    cout << "Enter the size of the maze: ";
    cin >> n;
    vector<vector<int>> maze(n, vector<int>(n));
    cout << "Enter the maze (1 for open path, 0 for blocked):" << endl;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            cin >> maze[i][j];
        }
    }
    vector<vector<int>> sol(n, vector<int>(n, 0)); // Initialize solution matrix with 0s
    vector<pair<int, int>> path;
    if (solveMaze(0, 0, n, maze, sol, path)) {
        cout << "Solution found:" << endl;
        printSolution(path);
    } else {
        cout << "No solution exists." << endl;
    }
    return 0;
}
Output :
Enter the size of the maze: 4
Enter the maze (1 for open path, 0 for blocked):
1 0 1 0
0 1 0 1
1 1 0 1
1 1 1 1
No solution exists.
*********************************************
Enter the size of the maze: 4
Enter the maze (1 for open path, 0 for blocked):
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 1
Solution found:
Solution Path Coordinates:
(0, 0) (1, 0) (2, 0) (2, 1) (2, 2) (3, 2) (3, 3)
//C code implementation of backtracking for solving Rat in a Maze problem
#include <stdio.h>
#include <stdlib.h>

#define MAX 100

// Checks if a given cell (x, y) is valid for the rat to move to.
int isSafe(int x, int y, int n, int maze[MAX][MAX], int sol[MAX][MAX]) {
    return (x >= 0 && x < n && y >= 0 && y < n && maze[x][y] == 1 && sol[x][y] == 0);
}

// Recursive function to solve the maze
int solveMaze(int x, int y, int n, int maze[MAX][MAX], int sol[MAX][MAX], int path[MAX][2], int *pathIndex) {
    // Base case: Reached the destination
    if (x == n - 1 && y == n - 1) {
        sol[x][y] = 1; // Mark destination as visited
        path[*pathIndex][0] = x;
        path[*pathIndex][1] = y;
        (*pathIndex)++;
        return 1;
    }

    // Check if the current cell is valid
    if (isSafe(x, y, n, maze, sol)) {
        // Mark current cell as visited
        sol[x][y] = 1;
        path[*pathIndex][0] = x;
        path[*pathIndex][1] = y;
        (*pathIndex)++;

        // Explore all possible directions (right, down, left, up)
        if (solveMaze(x + 1, y, n, maze, sol, path, pathIndex) ||
            solveMaze(x, y + 1, n, maze, sol, path, pathIndex) ||
            solveMaze(x - 1, y, n, maze, sol, path, pathIndex) ||
            solveMaze(x, y - 1, n, maze, sol, path, pathIndex)) {
            return 1; // If any direction leads to a solution, return true
        }

        // Backtrack (if no solution found in any direction)
        sol[x][y] = 0; // Unmark the cell
        (*pathIndex)--;
        return 0;
    }

    return 0; // If the cell is not safe, return false
}

// Prints the coordinates of the solution path
void printSolution(int path[MAX][2], int pathIndex) {
    printf("Solution Path Coordinates:\n");
    for (int i = 0; i < pathIndex; i++) {
        printf("(%d, %d) ", path[i][0], path[i][1]);
    }
    printf("\n");
}

int main() {
    int n;
    printf("Enter the size of the maze: ");
    scanf("%d", &n);

    int maze[MAX][MAX];

    printf("Enter the maze (1 for open path, 0 for blocked):\n");
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            scanf("%d", &maze[i][j]);
        }
    }

    int sol[MAX][MAX] = {0}; // Initialize solution matrix with 0s
    int path[MAX][2];        // To store the path coordinates
    int pathIndex = 0;

    if (solveMaze(0, 0, n, maze, sol, path, &pathIndex)) {
        printf("Solution found:\n");
        printSolution(path, pathIndex);
    } else {
        printf("No solution exists.\n");
    }

    return 0;
}
Output :
Enter the size of the maze: 4
Enter the maze (1 for open path, 0 for blocked):
1 0 1 0
0 1 0 1
1 1 0 1
1 1 1 1
No solution exists.
*********************************************
Enter the size of the maze: 4
Enter the maze (1 for open path, 0 for blocked):
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 1
Solution found:
Solution Path Coordinates:
(0, 0) (1, 0) (2, 0) (2, 1) (2, 2) (3, 2) (3, 3)
Scroll to Top