Network Flow


A flow network, also known as a network flow, is a directed graph where each edge has a capacity and each node (except for the source and sink nodes) has a flow value associated with it. Flow networks are commonly used to model transportation or distribution systems, such as water distribution networks, traffic flow, or computer networks.

Fig.An example of flow network with Source and Sink node with capacities of each link

In a flow network:

  1. Nodes: These represent points in the network where the flow can split or merge. Typically, there are two special nodes: a source node, from which flow originates, and a sink node, where flow terminates.
  2. Edges: These represent the connections between nodes and have associated capacities, which indicate the maximum amount of flow that can traverse the edge.
  3. Flow: This is the amount of material, information, or whatever is being transported, that is sent from the source to the sink through the network. The flow must satisfy certain constraints:
    • The flow through any edge cannot exceed its capacity.
    • The total flow out of any node (except the source and sink) must equal the total flow into that node.

Flow networks are used in optimization problems, such as the maximum flow problem, where the goal is to determine the maximum amount of flow that can be sent from the source to the sink without violating the capacity constraints. They also find applications in various fields including transportation planning, telecommunications, and logistics.

Dijkstra’s Vs Bellman-Ford algorithm

Bellman-Ford algorithm

How Does Bellman-Ford Work?

Ford Fulkerson Algorithm

Edmond Karp Algorithm

The algorithm is identical to the Ford–Fulkerson algorithm, except that the search order when finding the augmenting path is defined. The path found must be a shortest path that has available capacity. This can be found by a breadth-first search, where we apply a weight of 1 to each edge. The running time of  {\displaystyle O(|V||E|^{2})} is found by showing that each augmenting path can be found in {\displaystyle O(|E|)} time, that every time at least one of the {\displaystyle E} edges becomes saturated (an edge which has the maximum possible flow), that the distance from the saturated edge to the source along the augmenting path must be longer than last time it was saturated, and that the length is at most {\displaystyle |V|}. Another property of this algorithm is that the length of the shortest augmenting path increases monotonically. There is an accessible proof in Introduction to Algorithms.(THC book).

Push Relabel Algorithm

In mathematical optimization, the push–relabel algorithm (alternatively, preflow–push algorithm) is an algorithm for computing maximum flows in a flow network. The name “push–relabel” comes from the two basic operations used in the algorithm. Throughout its execution, the algorithm maintains a “preflow” and gradually converts it into a maximum flow by moving flow locally between neighboring nodes using push operations under the guidance of an admissible network maintained by relabel operations. In comparison, the Ford–Fulkerson algorithm performs global augmentations that send flow following paths from the source all the way to the sink.

Network flow/flow networks.

Ford Fulkerson

The Ford-Fulkerson algorithm is used to compute the maximum flow in a flow network. It works by repeatedly finding augmenting paths in the residual graph and increasing the flow along those paths. This method can be implemented with DFS (Depth-First Search) or BFS (Breadth-First Search) for finding augmenting paths. Here, we’ll use DFS for simplicity in the explanation.

//C code for Ford-Fulkerson algorithm
#include <stdio.h>
#include <limits.h>  // For INT_MAX (used to represent infinity)
#include <string.h>  // For memset function

// Maximum number of vertices in the graph
#define V 6  // You can change this to modify the number of vertices

// Function to perform Depth-First Search (DFS) in the residual graph
// It will find an augmenting path from source to sink and update the parent array
int dfs(int residualGraph[V][V], int source, int sink, int parent[], int visited[]) {
    // Mark the source node as visited
    visited[source] = 1;

    // If we reach the sink, return true (path found)
    if (source == sink) {
        return 1;
    }

    // Try all adjacent vertices of the current vertex
    for (int v = 0; v < V; v++) {
        // If v is not visited and there is a positive capacity (residual capacity)
        if (!visited[v] && residualGraph[source][v] > 0) {
            parent[v] = source;  // Set the parent of v as the current vertex
            // Recur to explore further
            if (dfs(residualGraph, v, sink, parent, visited)) {
                return 1;  // If augmenting path is found, return true
            }
        }
    }

    // If no augmenting path is found, return false
    return 0;
}

// Function to implement the Ford-Fulkerson algorithm
int fordFulkerson(int graph[V][V], int source, int sink) {
    // Create a residual graph and initialize it as the input graph
    int residualGraph[V][V];
    for (int i = 0; i < V; i++) {
        for (int j = 0; j < V; j++) {
            residualGraph[i][j] = graph[i][j];
        }
    }

    int parent[V];  // Array to store the path
    int maxFlow = 0;  // Variable to store the maximum flow

    // Augment the flow while there is an augmenting path
    while (1) {
        // Visited array to keep track of visited nodes during DFS
        int visited[V] = {0};

        // Perform DFS to find an augmenting path
        if (!dfs(residualGraph, source, sink, parent, visited)) {
            break;  // No more augmenting path, break the loop
        }

        // Find the maximum flow in the found path
        int pathFlow = INT_MAX;
        for (int v = sink; v != source; v = parent[v]) {
            int u = parent[v];
            pathFlow = (pathFlow < residualGraph[u][v]) ? pathFlow : residualGraph[u][v];
        }

        // Update the residual graph by subtracting the flow from forward edges
        // and adding the flow to the reverse edges
        for (int v = sink; v != source; v = parent[v]) {
            int u = parent[v];
            residualGraph[u][v] -= pathFlow;
            residualGraph[v][u] += pathFlow;
        }

        // Add the flow of the current path to the overall flow
        maxFlow += pathFlow;
    }

    return maxFlow;  // Return the maximum flow found
}

int main() {
    // Example graph (6 vertices)
    // Graph represented as an adjacency matrix (capacity matrix)
    int graph[V][V] = {
        {0, 16, 13, 0, 0, 0},  // Vertex 0 connects to 1 with capacity 16, 2 with capacity 13
        {0, 0, 10, 12, 0, 0},  // Vertex 1 connects to 2 with capacity 10, 3 with capacity 12
        {0, 4, 0, 0, 14, 0},   // Vertex 2 connects to 1 with capacity 4, 4 with capacity 14
        {0, 0, 9, 0, 0, 20},   // Vertex 3 connects to 2 with capacity 9, 5 with capacity 20
        {0, 0, 0, 7, 0, 4},    // Vertex 4 connects to 3 with capacity 7, 5 with capacity 4
        {0, 0, 0, 0, 0, 0}     // Vertex 5 is the sink (no outgoing edges)
    };

    int source = 0;  // Source node (vertex 0)
    int sink = 5;    // Sink node (vertex 5)

    // Calling the Ford-Fulkerson algorithm to find the maximum flow
    int maxFlow = fordFulkerson(graph, source, sink);

    // Output the maximum flow
    printf("The maximum flow from source %d to sink %d is %d\n", source, sink, maxFlow);
    
    return 0;
}
Output :
The maximum flow from source 0 to sink 5 is 23

Here’s below the complete C++ code for implementing the Ford-Fulkerson algorithm using classes and the Standard Template Library (STL). Each line is explained with comments.

// C++ code for implementing the Ford-Fulkerson
#include <iostream>
#include <vector>
#include <queue>
#include <climits> // For INT_MAX

using namespace std;

// Class to represent a graph
class Graph {
private:
    int numVertices; // Number of vertices in the graph
    vector<vector<int>> capacity; // Capacity matrix

public:
    // Constructor to initialize the graph
    Graph(int vertices) : numVertices(vertices) {
        capacity.resize(vertices, vector<int>(vertices, 0));
    }

    // Function to add an edge with a given capacity
    void addEdge(int u, int v, int cap) {
        capacity[u][v] = cap; // Set the capacity of the edge from u to v
    }

    // Function to perform BFS and find an augmenting path
    bool bfs(vector<vector<int>> &residualCapacity, int source, int sink, vector<int> &parent) {
        vector<bool> visited(numVertices, false); // Keep track of visited vertices
        queue<int> q; // Queue for BFS
        q.push(source);
        visited[source] = true;
        parent[source] = -1; // Source has no parent

        while (!q.empty()) {
            int u = q.front();
            q.pop();

            // Explore all neighbors of u
            for (int v = 0; v < numVertices; v++) {
                // If v is not visited and there is residual capacity
                if (!visited[v] && residualCapacity[u][v] > 0) {
                    q.push(v);
                    visited[v] = true;
                    parent[v] = u; // Set parent of v to u

                    // If we reach the sink, return true
                    if (v == sink)
                        return true;
                }
            }
        }

        // If no path to sink is found
        return false;
    }

    // Function to implement the Ford-Fulkerson algorithm
    int fordFulkerson(int source, int sink) {
        vector<vector<int>> residualCapacity = capacity; // Create a residual capacity matrix
        vector<int> parent(numVertices); // To store the augmenting path
        int maxFlow = 0; // Initialize the max flow to 0

        // While there exists an augmenting path
        while (bfs(residualCapacity, source, sink, parent)) {
            // Find the minimum residual capacity in the augmenting path
            int pathFlow = INT_MAX;
            for (int v = sink; v != source; v = parent[v]) {
                int u = parent[v];
                pathFlow = min(pathFlow, residualCapacity[u][v]);
            }

            // Update the residual capacities of the edges and reverse edges
            for (int v = sink; v != source; v = parent[v]) {
                int u = parent[v];
                residualCapacity[u][v] -= pathFlow;
                residualCapacity[v][u] += pathFlow;
            }

            // Add the path flow to the overall flow
            maxFlow += pathFlow;
        }

        return maxFlow;
    }
};

int main() {
    // Create a graph with 6 vertices (0 to 5)
    Graph g(6);

    // Add edges along with their capacities
    g.addEdge(0, 1, 16);
    g.addEdge(0, 2, 13);
    g.addEdge(1, 2, 10);
    g.addEdge(1, 3, 12);
    g.addEdge(2, 1, 4);
    g.addEdge(2, 4, 14);
    g.addEdge(3, 2, 9);
    g.addEdge(3, 5, 20);
    g.addEdge(4, 3, 7);
    g.addEdge(4, 5, 4);

    // Display the maximum flow from source (0) to sink (5)
    cout << "The maximum possible flow is: " << g.fordFulkerson(0, 5) << endl;

    return 0;
}
Output :
The maximum possible flow is: 23

Here below is a C code implementation of the Edmond Karp, with detailed explanations for each line within the code:

//C Code for Edmonds-Karp Algorithm:
#include <stdio.h>
#include <limits.h>  // To use INT_MAX for infinite capacity
#include <queue>  // For BFS (using STL queue for simple implementation)

// Number of vertices in the graph
#define V 6  // Example graph with 6 vertices (adjust as necessary)

// Function to perform BFS and find the path with available capacity
int bfs(int residualGraph[V][V], int source, int sink, int parent[]) {
    // Initialize all nodes as not visited
    bool visited[V] = {0};

    // Create a queue for BFS
    std::queue<int> q;

    // Start BFS from the source
    q.push(source);
    visited[source] = true;
    parent[source] = -1;  // Source has no parent

    // BFS to find an augmenting path from source to sink
    while (!q.empty()) {
        int u = q.front();
        q.pop();

        // Traverse all adjacent vertices of u
        for (int v = 0; v < V; v++) {
            if (visited[v] == false && residualGraph[u][v] > 0) {  // If v is not visited and has capacity left
                q.push(v);
                parent[v] = u;  // Set parent of v as u
                visited[v] = true;

                // If we reached the sink, no need to go further
                if (v == sink) {
                    return 1;  // Return true if we found a path
                }
            }
        }
    }
    return 0;  // Return false if no augmenting path exists
}

// Function to implement the Edmonds-Karp algorithm
int edmondsKarp(int graph[V][V], int source, int sink) {
    // Create a residual graph and initialize it as the input graph
    int residualGraph[V][V];
    for (int i = 0; i < V; i++) {
        for (int j = 0; j < V; j++) {
            residualGraph[i][j] = graph[i][j];
        }
    }

    int parent[V];  // Array to store the path
    int maxFlow = 0;  // Variable to store the maximum flow

    // Augment the flow while there is a path from source to sink
    while (bfs(residualGraph, source, sink, parent)) {
        // Find the maximum flow in the found path
        int pathFlow = INT_MAX;
        for (int v = sink; v != source; v = parent[v]) {
            int u = parent[v];
            pathFlow = (pathFlow < residualGraph[u][v]) ? pathFlow : residualGraph[u][v];
        }

        // Update the residual graph by subtracting the flow from forward edges
        // and adding the flow to the reverse edges
        for (int v = sink; v != source; v = parent[v]) {
            int u = parent[v];
            residualGraph[u][v] -= pathFlow;
            residualGraph[v][u] += pathFlow;
        }

        // Add the path flow to the overall flow
        maxFlow += pathFlow;
    }

    return maxFlow;  // Return the maximum flow found
}

// Main function to test the Edmonds-Karp algorithm
int main() {
    // Example graph with 6 vertices (0 to 5)
    // Graph represented as an adjacency matrix
    int graph[V][V] = {
        {0, 16, 13, 0, 0, 0},  // Vertex 0 is connected to 1 (capacity 16), 2 (capacity 13)
        {0, 0, 10, 12, 0, 0},  // Vertex 1 is connected to 2 (capacity 10), 3 (capacity 12)
        {0, 4, 0, 0, 14, 0},   // Vertex 2 is connected to 1 (capacity 4), 4 (capacity 14)
        {0, 0, 9, 0, 0, 20},   // Vertex 3 is connected to 2 (capacity 9), 5 (capacity 20)
        {0, 0, 0, 7, 0, 4},    // Vertex 4 is connected to 3 (capacity 7), 5 (capacity 4)
        {0, 0, 0, 0, 0, 0}     // Vertex 5 is connected to no one (sink)
    };

    int source = 0;  // Source node (vertex 0)
    int sink = 5;    // Sink node (vertex 5)

    // Calling the Edmonds-Karp algorithm to find the maximum flow
    int maxFlow = edmondsKarp(graph, source, sink);

    // Output the maximum flow
    printf("The maximum flow from source %d to sink %d is %d\n", source, sink, maxFlow);
    return 0;
}

Output :
The maximum flow from source 0 to sink 5 is 23
//C++ Code with Class and Vector STL:
#include <iostream>
#include <vector>
#include <queue>
#include <limits.h>  // For INT_MAX

using namespace std;

class EdmondsKarp {
private:
    int V;  // Number of vertices
    vector<vector<int>> graph;  // Adjacency matrix (graph representation)
    
    // Helper function to perform BFS and find the augmenting path
    bool bfs(vector<vector<int>>& residualGraph, int source, int sink, vector<int>& parent) {
        vector<bool> visited(V, false);
        queue<int> q;
        q.push(source);
        visited[source] = true;
        parent[source] = -1;

        // Perform BFS to find an augmenting path from source to sink
        while (!q.empty()) {
            int u = q.front();
            q.pop();

            for (int v = 0; v < V; v++) {
                // If the vertex is not visited and there is remaining capacity
                if (!visited[v] && residualGraph[u][v] > 0) {
                    q.push(v);
                    parent[v] = u;
                    visited[v] = true;

                    // If we reached the sink, stop
                    if (v == sink) {
                        return true;
                    }
                }
            }
        }
        return false;  // No augmenting path found
    }

public:
    // Constructor to initialize the graph with a given number of vertices
    EdmondsKarp(int vertices) : V(vertices) {
        graph.resize(V, vector<int>(V, 0));  // Initialize graph with 0s
    }

    // Function to set the capacities of edges (graph initialization)
    void setEdge(int u, int v, int capacity) {
        graph[u][v] = capacity;
    }

    // Function to implement the Edmonds-Karp algorithm
    int edmondsKarp(int source, int sink) {
        // Create a residual graph initially as a copy of the input graph
        vector<vector<int>> residualGraph = graph;
        vector<int> parent(V);  // Array to store the path
        
        int maxFlow = 0;  // Variable to store the maximum flow
        
        // Augment the flow while there is an augmenting path
        while (bfs(residualGraph, source, sink, parent)) {
            // Find the maximum flow in the found path
            int pathFlow = INT_MAX;
            for (int v = sink; v != source; v = parent[v]) {
                int u = parent[v];
                pathFlow = min(pathFlow, residualGraph[u][v]);  // Get the minimum capacity in the path
            }

            // Update the residual graph
            for (int v = sink; v != source; v = parent[v]) {
                int u = parent[v];
                residualGraph[u][v] -= pathFlow;  // Reduce the capacity of the forward edge
                residualGraph[v][u] += pathFlow;  // Increase the capacity of the reverse edge
            }

            // Add the flow of the current path to the total flow
            maxFlow += pathFlow;
        }

        return maxFlow;  // Return the total maximum flow
    }
};

int main() {
    int V = 6;  // Number of vertices in the graph
    EdmondsKarp ek(V);  // Create an object of EdmondsKarp class

    // Set edges and their capacities (graph initialization)
    ek.setEdge(0, 1, 16);
    ek.setEdge(0, 2, 13);
    ek.setEdge(1, 2, 10);
    ek.setEdge(1, 3, 12);
    ek.setEdge(2, 1, 4);
    ek.setEdge(2, 4, 14);
    ek.setEdge(3, 2, 9);
    ek.setEdge(3, 5, 20);
    ek.setEdge(4, 3, 7);
    ek.setEdge(4, 5, 4);

    int source = 0;  // Source node
    int sink = 5;    // Sink node

    // Find the maximum flow
    int maxFlow = ek.edmondsKarp(source, sink);

    // Output the maximum flow
    cout << "The maximum flow from source " << source << " to sink " << sink << " is " << maxFlow << endl;

    return 0;
}
Output :
The maximum flow from source 0 to sink 5 is 23

What is all pairs shortest path?

An example of the all-pairs shortest path problem can be illustrated with a simple weighted directed graph representing a road network. Consider the following graph:

In this graph:

  • Vertices: There are four vertices labeled from 1 to 4.
  • Edges: Each edge is weighted, representing the distance between connected vertices.

For example:

  • There is an edge from vertex 1 to vertex 3 with weight 4.
  • There is an edge from vertex 1 to vertex 2 with weight 1.

The task is to find the shortest path between every pair of vertices in this graph.

Floyd Warshall Algorithm

Floyd Warshall

//Here is the C program implementing the Floyd-Warshall algorithm 
//with comments explaining each part of the code:
#include <stdio.h>
#include <limits.h>

#define MAX 10  // Defining the maximum size for the matrix (number of vertices)

// Function to implement the Floyd-Warshall algorithm
void floydWarshall(int dist[MAX][MAX], int n) {
    // k is the intermediate node, i is the source node, and j is the destination node
    for (int k = 0; k < n; k++) {  // Loop over each intermediate node
        for (int i = 0; i < n; i++) {  // Loop over each source node
            for (int j = 0; j < n; j++) {  // Loop over each destination node
                // If the path through the intermediate node k is shorter, update the distance
                if (dist[i][k] != INT_MAX && dist[k][j] != INT_MAX && dist[i][j] > dist[i][k] + dist[k][j]) {
                    dist[i][j] = dist[i][k] + dist[k][j];
                }
            }
        }
    }
}

// Function to print the distance matrix
void printSolution(int dist[MAX][MAX], int n) {
    printf("The shortest distances between every pair of vertices are:\n");
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            if (dist[i][j] == INT_MAX) {
                printf("INF ");  // If no path exists, print INF
            } else {
                printf("%d ", dist[i][j]);
            }
        }
        printf("\n");
    }
}

int main() {
    int n, i, j;
    
    // Take input for number of vertices in the graph
    printf("Enter the number of vertices: ");
    scanf("%d", &n);
    // Create the distance matrix (initialize with INT_MAX where there is no direct path)
    int dist[MAX][MAX];
    printf("Enter the adjacency matrix (use 0 for no direct edge and other positive values for edge weights):\n");
     for (i = 0; i < n; i++) {
     for (j = 0; j < n; j++) {
            scanf("%d", &dist[i][j]);
           
            // If there is no direct edge, set distance to INF (INT_MAX)
            if (dist[i][j] == 0 && i != j) {
                dist[i][j] = INT_MAX;
            }
        }
    }

    // Call the Floyd-Warshall algorithm
    floydWarshall(dist, n);
    
    // Print the result
    printSolution(dist, n);
    
    return 0;
}

Output :
Enter the number of vertices: 4
Enter the adjacency matrix (use 0 for no direct edge and other positive values for edge weights):
0 3 0 0
3 0 4 0
0 4 0 2
0 0 2 0

The shortest distances between every pair of vertices are:
0 3 7 5 
3 0 4 6 
7 4 0 2 
5 6 2 0 
/*To display not only the shortest distances and the vertices involved in the 
shortest paths but also the total cost (the total distance) of each shortest path, we will update the program further.We need to modify the following: Track the shortest paths and their costs. Print the shortest path from one vertex to another, showing the intermediate vertices and the total cost.*/
#include <stdio.h>
#include <limits.h>

#define MAX 10  // Defining the maximum size for the matrix (number of vertices)

// Function to implement the Floyd-Warshall algorithm
void floydWarshall(int dist[MAX][MAX], int next[MAX][MAX], int n) {
    // k is the intermediate node, i is the source node, and j is the destination node
    for (int k = 0; k < n; k++) {  // Loop over each intermediate node
        for (int i = 0; i < n; i++) {  // Loop over each source node
            for (int j = 0; j < n; j++) {  // Loop over each destination node
                // If the path through the intermediate node k is shorter, update the distance
                if (dist[i][k] != INT_MAX && dist[k][j] != INT_MAX && dist[i][j] > dist[i][k] + dist[k][j]) {
                    dist[i][j] = dist[i][k] + dist[k][j];
                    next[i][j] = next[i][k];  // Update the next vertex on the shortest path
                }
            }
        }
    }
}

// Function to print the distance matrix
void printSolution(int dist[MAX][MAX], int next[MAX][MAX], int n) {
    printf("The shortest distances between every pair of vertices are:\n");
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            if (dist[i][j] == INT_MAX) {
                printf("INF ");  // If no path exists, print INF
            } else {
                printf("%d ", dist[i][j]);
            }
        }
        printf("\n");
    }

    // Now print the shortest paths and total cost
    printf("\nShortest paths between every pair of vertices (with total cost) are:\n");
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            if (i != j) {
                printf("Shortest path from %d to %d: ", i + 1, j + 1);
                int current = i;
                int totalCost = 0;
                // Traverse the path and calculate total cost
                while (current != j) {
                    printf("%d -> ", current + 1);
                    totalCost += dist[current][next[current][j]];  // Add the cost of the edge
                    current = next[current][j];
                }
                totalCost += dist[current][j];  // Add the cost from last node to the destination
                printf("%d | Total cost: %d\n", j + 1, totalCost);
            }
        }
    }
}

int main() {
    int n, i, j;
    
    // Take input for number of vertices in the graph
    printf("Enter the number of vertices: ");
    scanf("%d", &n);
    
    // Create the distance matrix (initialize with INT_MAX where there is no direct path)
    int dist[MAX][MAX];
    int next[MAX][MAX];

    printf("Enter the adjacency matrix (use 0 for no direct edge and other positive values for edge weights):\n");

    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            scanf("%d", &dist[i][j]);
            
            // Initialize next matrix to help in path reconstruction
            if (dist[i][j] != 0 && dist[i][j] != INT_MAX) {
                next[i][j] = j;  // If there's an edge, set next[i][j] as j
            } else if (i == j) {
                next[i][j] = i;  // For diagonal, the next node is itself
            } else {
                next[i][j] = -1;  // No path initially
            }
            
            // If there is no direct edge, set distance to INF
            if (dist[i][j] == 0 && i != j) {
                dist[i][j] = INT_MAX;
                next[i][j] = -1;
            }
        }
    }

    // Call the Floyd-Warshall algorithm
    floydWarshall(dist, next, n);
    
    // Print the result
    printSolution(dist, next, n);
    
    return 0;
}
Output :
Enter the number of vertices: 4
Enter the adjacency matrix (use 0 for no direct edge and other positive values for edge weights):
0 3 0 0
3 0 4 0
0 4 0 2
0 0 2 0

The shortest distances between every pair of vertices are:
0 3 7 5 
3 0 4 6 
7 4 0 2 
5 6 2 0 

Shortest paths between every pair of vertices (with total cost) are:
Shortest path from 1 to 2: 1 -> 2 | Total cost: 3
Shortest path from 1 to 3: 1 -> 2 -> 3 | Total cost: 7
Shortest path from 1 to 4: 1 -> 2 -> 3 -> 4 | Total cost: 5
Shortest path from 2 to 1: 2 -> 1 | Total cost: 3
Shortest path from 2 to 3: 2 -> 3 | Total cost: 4
Shortest path from 2 to 4: 2 -> 3 -> 4 | Total cost: 6
Shortest path from 3 to 1: 3 -> 2 -> 1 | Total cost: 7
Shortest path from 3 to 2: 3 -> 2 | Total cost: 4
Shortest path from 3 to 4: 3 -> 4 | Total cost: 2
Shortest path from 4 to 1: 4 -> 3 -> 2 -> 1 | Total cost: 5
Shortest path from 4 to 2: 4 -> 3 -> 2 | Total cost: 6
Shortest path from 4 to 3: 4 -> 3 | Total cost: 2
//C++ Code Using Class and Vector STL:
#include <iostream>
#include <vector>
#include <limits.h>
using namespace std;

class FloydWarshall {
private:
    vector<vector<int>> dist;  // Distance matrix (using vector of vectors)
    int n;  // Number of vertices

public:
    // Constructor to initialize the number of vertices and the distance matrix
    FloydWarshall(int vertices) : n(vertices) {
        dist.resize(n, vector<int>(n, INT_MAX));  // Resize the matrix with INT_MAX initially
    }

    // Method to take input for the adjacency matrix
    void inputGraph() {
        cout << "Enter the adjacency matrix (use 0 for no direct edge and other positive values for edge weights):\n";
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                cin >> dist[i][j];
                if (dist[i][j] == 0 && i != j) {
                    dist[i][j] = INT_MAX;  // No path exists, set to infinity
                }
            }
        }
    }

    // Method to implement the Floyd-Warshall algorithm
    void runAlgorithm() {
        // Loop over each intermediate node (k)
        for (int k = 0; k < n; k++) {
            // Loop over each source node (i)
            for (int i = 0; i < n; i++) {
                // Loop over each destination node (j)
                for (int j = 0; j < n; j++) {
                    // If a shorter path is found through the intermediate node k
                    if (dist[i][k] != INT_MAX && dist[k][j] != INT_MAX && dist[i][j] > dist[i][k] + dist[k][j]) {
                        dist[i][j] = dist[i][k] + dist[k][j];
                    }
                }
            }
        }
    }

    // Method to print the distance matrix
    void printSolution() {
        cout << "The shortest distances between every pair of vertices are:\n";
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (dist[i][j] == INT_MAX) {
                    cout << "INF ";  // If no path exists, print INF
                } else {
                    cout << dist[i][j] << " ";
                }
            }
            cout << endl;
        }
    }
};

int main() {
    int n;

    // Take input for number of vertices in the graph
    cout << "Enter the number of vertices: ";
    cin >> n;

    // Create an object of FloydWarshall class
    FloydWarshall fw(n);

    // Take input for the adjacency matrix
    fw.inputGraph();

    // Run the Floyd-Warshall algorithm
    fw.runAlgorithm();

    // Print the result (shortest distances)
    fw.printSolution();

    return 0;
}
Enter the number of vertices: 4
Enter the adjacency matrix (use 0 for no direct edge and other positive values for edge weights):
0 3 0 0
3 0 4 0
0 4 0 2
0 0 2 0
The shortest distances between every pair of vertices are:
0 3 7 5 
3 0 4 6 
7 4 0 2 
5 6 2 0 

Networks Flow : Bipartite Matching

// C code for bipartite matching
#include <stdio.h>
#include <stdbool.h>

// Function to check if a path exists from u to v using BFS
bool bpm(bool bpGraph[100][100], int u, bool seen[], int matchR[]) {
    // Base case: If this column is not assigned to any row yet
    for (int v = 0; v < 100; v++) {
        if (bpGraph[u][v] && !seen[v]) { 
            seen[v] = true; 

            // If v is not visited and there is an edge from u to v, 
            // then try to assign this v to an unmatched row. 
            if (matchR[v] < 0 || bpm(bpGraph, matchR[v], seen, matchR)) {
                matchR[v] = u;
                return true;
            }
        }
    }
    return false;
}

// Returns maximum number of matching from M to N
int maxBPM(bool bpGraph[100][100], int n) {
    // An array to keep track of the matchings of the vertices of N
    int matchR[100]; 

    // Initially all jobs are available
    for(int i = 0; i < 100; i++)
        matchR[i] = -1; 

    int result = 0; // Count of jobs assigned to applicants
    for (int u = 0; u < n; u++) {
        // Mark all vertices as not visited for next applicant.
        bool seen[100];
        for(int i=0; i<100; i++)
            seen[i] = false; 

        // Find if the applicant 'u' can get any job
        if (bpm(bpGraph, u, seen, matchR))
            result++;
    }
    return result;
}

// Driver code
int main() {
    // Let us create a sample graph 
    // where the applicants are at one side of the 
    // graph, jobs at the other side and connecting 
    // lines indicate possible assignments. 
    bool bpGraph[100][100] = {
        {0, 1, 1, 0, 0},
        {1, 0, 0, 1, 0},
        {0, 0, 1, 0, 1},
        {0, 0, 0, 0, 0},
        {0, 0, 1, 0, 1}
    };
    int n = 5; 
    printf("Maximum number of applicants that can be assigned jobs = %d\n", maxBPM(bpGraph, n));

    return 0;
}
Output :
Maximum number of applicants that can be assigned jobs = 3
// C++ code for bipartite matching
#include <iostream>
#include <vector>
#include <queue>

using namespace std;

class BipartiteMatching {
private:
    int N; // Number of vertices on the left side
    int M; // Number of vertices on the right side
    vector<vector<int>> graph; 

public:
    BipartiteMatching(int N, int M) {
        this->N = N;
        this->M = M;
        graph.resize(N, vector<int>(M, 0)); 
    }

    void addEdge(int u, int v) {
        graph[u][v] = 1;
    }

    bool bfs(vector<int>& matchR, vector<bool>& seen) {
        queue<int> q; 
        for (int u = 0; u < N; u++) {
            if (matchR[u] == -1) {
                seen[u] = true;
                q.push(u);
            }
        }

        while (!q.empty()) {
            int u = q.front();
            q.pop();

            for (int v = 0; v < M; v++) {
                if (graph[u][v] && !seen[v]) {
                    seen[v] = true;
                    if (matchR[v] < 0 || bfs(matchR, seen)) {
                        matchR[v] = u;
                        return true;
                    }
                }
            }
        }

        return false;
    }

    int maxMatching() {
        vector<int> matchR(M, -1); // Array to store the matchings
        int result = 0;

        for (int u = 0; u < N; u++) {
            vector<bool> seen(M, false);
            if (bfs(matchR, seen)) {
                result++;
            }
        }

        return result;
    }
};

int main() {
    int N = 5, M = 5; 
    BipartiteMatching bm(N, M);

    bm.addEdge(0, 1);
    bm.addEdge(0, 2);
    bm.addEdge(1, 0);
    bm.addEdge(1, 3);
    bm.addEdge(2, 2);
    bm.addEdge(2, 4);
    bm.addEdge(4, 2);
    bm.addEdge(4, 4);

    cout << "Maximum number of matchings: " << bm.maxMatching() << endl;

    return 0;
}
Output :
Maximum number of applicants that can be assigned jobs = 3

Explanation:

  1. Include Headers:
    • iostream: For input/output operations.
    • vector: For using the vector STL.
    • queue: For using the queue STL in the BFS implementation.
  2. BipartiteMatching Class:
    • Private Members:
      • N: Number of vertices on the left side.
      • M: Number of vertices on the right side.
      • graph: A 2D vector representing the bipartite graph. graph[u][v] is 1 if there’s an edge from u to v, 0 otherwise.
    • Public Members:
      • Constructor: Initializes N, M, and resizes the graph vector.
      • addEdge(): Adds an edge between vertices u and v.
      • bfs(): Implements Breadth-First Search to find an augmenting path.
      • maxMatching(): Finds the maximum number of matchings in the bipartite graph.
  3. bfs() Function:
    • Uses a queue to perform BFS.
    • Initially, enqueues all unmatched vertices on the left side.
    • In each iteration:
      • Dequeues a vertex u.
      • Explores all neighbors v of u.
      • If v is not visited:
        • Marks v as visited.
        • If v is unmatched or an augmenting path can be found for the vertex currently matched with v, assign u to v and return true.
  4. maxMatching() Function:
    • Initializes an array matchR to store the matchings.
    • Iterates through all vertices on the left side.
      • Calls bfs() to check if an augmenting path exists for the current vertex.
      • If an augmenting path is found, increment the result count.
    • Returns the maximum number of matchings.
  5. main() Function:
    • Creates a BipartiteMatching object.
    • Adds edges to the graph using addEdge().
    • Calls maxMatching() to find the maximum number of matchings.
    • Prints the result.

This above C++ code provides a more object-oriented and concise implementation of the bipartite matching algorithm using STL features like vector and queue.

Cycle Cancellation Algorithm

Dijkstra algorithm

// C code for Dijkstra algorithm
#include <stdio.h>
#include <limits.h>

#define V 9 // Number of vertices in the graph

// Function to print the constructed distance array
void printSolution(int dist[])
{
    printf("Vertex \t\t Distance from Source\n");
    for (int i = 0; i < V; i++)
        printf("%d \t\t %d\n", i, dist[i]);
}

// Function to find the vertex with the minimum distance value, 
// from the set of vertices not yet included in shortest path tree
int minDistance(int dist[], bool sptSet[])
{
    // Initialize min value
    int min = INT_MAX, min_index;

    for (int v = 0; v < V; v++)
        if (sptSet[v] == false && dist[v] <= min)
            min = dist[v], min_index = v;

    return min_index;
}

// Function to implement Dijkstra's single source shortest path algorithm
// from a given source to all other vertices
void dijkstra(int graph[V][V], int src)
{
    int dist[V];     // The output array. dist[i] will hold the shortest
                    // distance from src to i

    bool sptSet[V]; // sptSet[i] will be true if vertex i is included in shortest
                    // path tree or shortest distance from src to i is finalized

    // Initialize all distances as INFINITE and stptSet[] as false
    for (int i = 0; i < V; i++)
        dist[i] = INT_MAX, sptSet[i] = false;

    // Distance of source vertex from itself will always be 0
    dist[src] = 0;

    // Find shortest path for all vertices
    for (int count = 0; count < V - 1; count++) {
        // Pick the minimum distance vertex from the set of vertices 
        // not yet processed. u is always equal to src in the first iteration.
        int u = minDistance(dist, sptSet);

        // Mark the picked vertex as processed
        sptSet[u] = true;

        // Update dist value of the adjacent vertices of the picked vertex.
        for (int v = 0; v < V; v++)

            // Update dist[v] only if is not in sptSet, there is an edge from 
            // u to v, and total weight of path from src to v through u is 
            // smaller than current value of dist[v]
            if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX && dist[u] + graph[u][v] < dist[v])
                dist[v] = dist[u] + graph[u][v];
    }

    // print the constructed distance array
    printSolution(dist);
}

// Driver program to test above functions
int main()
{
    /* Let us create the example graph discussed above */
    int graph[V][V] = { { 0, 4, 0, 0, 0, 0, 0, 8, 0 },
                        { 4, 0, 8, 0, 0, 0, 0, 11, 0 },
                        { 0, 8, 0, 7, 0, 4, 0, 0, 2 },
                        { 0, 0, 7, 0, 9, 14, 0, 0, 0 },
                        { 0, 0, 0, 9, 0, 10, 0, 0, 0 },
                        { 0, 0, 4, 14, 10, 0, 2, 0, 0 },
                        { 0, 0, 0, 0, 0, 2, 0, 1, 6 },
                        { 8, 11, 0, 0, 0, 0, 1, 0, 7 },
                        { 0, 0, 2, 0, 0, 0, 6, 7, 0 } };

    dijkstra(graph, 0);

    return 0;
}
Output:

Vertex     Distance from Source
0          0
1          4
2          8
3          7
4          9
5          10
6          2
7          8
8          7
This output shows the shortest distances from vertex 0 to all other vertices in the given grap
//C++ code for Dijkstra algorithm
#include <iostream>
#include <vector>
#include <limits.h>
#include <algorithm>

using namespace std;

class Graph {
private:
    int V; // Number of vertices
    vector<vector<int>> adj; // Adjacency list representation

public:
    Graph(int V) {
        this->V = V;
        adj.resize(V);
    }

    void addEdge(int u, int v, int w) {
        adj[u].push_back({v, w}); 
        // Assuming undirected graph, add edge in both directions
        adj[v].push_back({u, w}); 
    }

    int minDistance(vector<int>& dist, vector<bool>& sptSet) {
        int min = INT_MAX, min_index;

        for (int v = 0; v < V; v++)
            if (sptSet[v] == false && dist[v] <= min)
                min = dist[v], min_index = v;

        return min_index;
    }

    void dijkstra(int src) {
        vector<int> dist(V, INT_MAX); 
        vector<bool> sptSet(V, false);

        dist[src] = 0;

        for (int count = 0; count < V - 1; count++) {
            int u = minDistance(dist, sptSet);
            sptSet[u] = true;

            for (auto i : adj[u]) {
                int v = i[0];
                int weight = i[1];

                if (!sptSet[v] && dist[u] != INT_MAX && dist[u] + weight < dist[v])
                    dist[v] = dist[u] + weight;
            }
        }

        cout << "Vertex \t\t Distance from Source\n";
        for (int i = 0; i < V; i++)
            cout << i << " \t\t " << dist[i] << endl;
    }
};

int main() {
    int V = 9;
    Graph g(V);

    g.addEdge(0, 1, 4);
    g.addEdge(0, 7, 8);
    g.addEdge(1, 2, 8);
    g.addEdge(1, 7, 11);
    g.addEdge(2, 3, 7);
    g.addEdge(2, 8, 2);
    g.addEdge(2, 5, 4);
    g.addEdge(3, 4, 9);
    g.addEdge(3, 5, 14);
    g.addEdge(4, 5, 10);
    g.addEdge(5, 6, 2);
    g.addEdge(6, 7, 1);
    g.addEdge(6, 8, 6);
    g.addEdge(7, 8, 7);

    g.dijkstra(0);

    return 0;
}
Scroll to Top